
MATH 29 Bridging Course

Basic Concepts in Higher Mathematics

John Rick Dolor Manzanares

August 13, 2021

University of the Philippines Baguio



Table of Contents

1. Introduction

2. Review of Previous Topics

3. Partially Ordered Sets

4. Cardinality

5. Groups

1



Introduction



What is MATH 29?

MATH 29 course lays out the fundamental ideas of abstract mathematics and proof techniques
that students will need to master for other higher math courses such as Analysis and Topology.
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Thesis Preparation (Research Groups)

1. Applied Dynamical Systems
I Delay Differential Equations
I Mathematical Epidemiology

2. Algebra
I Linear Algebra and Matrix Analysis
I Algebraic Geometry

Motion Representations
Robot Kinematics

3. Mathematical Modeling and Simulation

4. Numerical Modeling

5. Number Theory

6. Statistics Research

7. Topological Data Analysis
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Review of Previous Topics



Basic Methods of Proving

If P then Q.

1. Direct Proof (Assume P is true then show that Q holds.)

2. Indirect
I Proof by Contraposition (Assume that the negation of Q is true then show that the negation

of Q holds.)
I Proof by Contradiction (Assume that P is true. Also, assume that the negation of Q is true. One

must end up with a contradiction.)

3. Proof by Exhaustion (Assume P and consider every case possible. One must show that Q
holds for every case.)

4. Mathematical Induction (Demonstrate the base case. Prove the inductive step.)
I Weak Induction
I Strong Induction
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Warm-Up Exercises

Write down a concise and elegant proof of the following statements.

1. For any integer n, n(n2 + 2) is divisible by 3.

2. For integers n ≥ 5, 2n > n2.

3. Let f (x) = 3x + 1 and g(x) = 6x + 5. Then there is a real number x such that
f (x) = g(x).

4. There are infinitely many prime numbers.

5. For any x ∈ R, 3
√
x is irrational when x is irrational.
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Basic Method of Proving: Set Theory Edition

Let A and B be two sets. Show that A = B .

1. Algebraic Proof

2. Pick-a-Point Method [for subset relations A ⊂ B] (Choose an arbitrary point x in A and
show that x is also in B .)
I Double Set Inclusion (Show that A ⊂ B and B ⊂ A to obtain A = B .)

Definition

The Cartesian product of the sets X and Y is defined by the set

X × Y = {(x , y) | x ∈ X , y ∈ Y }.

In general, the Cartesian product of a finite collection {Xn}kn=1 of sets is

X1 × X2 · · · × Xn = {(x1, x2, . . . , xn) | xi ∈ Xi for all i = 1, 2, . . . , k}.
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Warm-Up Exercises

1. Prove that {(x , 2x − 2) | x ∈ R} = {(t + 1, 2t) | t ∈ R}.

2. Let An =

[
2, 5 +

1
n

)
. Show that ⋂

n∈N
An = [2, 5].

3. Let B be a set and Aα, for α ∈ ∆, an indexed family of sets. Prove that

B ∩
⋃
a∈∆

Aα ⊆
⋃
α∈∆

(B ∩ Aα).
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Relations

Let R be a relation on a set A.

• R is reflexive on A if xRx for every x ∈ A.

• R is irreflexive on A if (x , x) 6∈ R for all x ∈ A.

• For each x , y ∈ R , R is symmetric if xRy implies yRx .

• For any x , y ∈ R , R is antisymmetric on A if x = y whenever xRy and yRx .

• R is transitive if xRy and yRz implies xRz for every x , y , z ∈ A.

• R is comparable if either xRy or yRx for all x , y ∈ A.

An equivalence relation R on a set A is a relation on A that is reflexive, symmetric, and transi-
tive.
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Warm-Up Exercises

1. Suppose R and S are two equivalence relations on a set A. Prove that R ∩ S is also an
equivalence relation.

2. Let R be a relation on Z such that xRy if and only if x2 + y 2 is even. Prove that R is an
equivalence relation. Describe its equivalence classes.

3. The relation ∼ defined on R − {0} by a ∼ b if and only if
a

b
∈ Q forms an equivalence

relation. Prove that [
√

3] = [
√

12].
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Functions

Let X and Y be two sets. Consider the function f : X → Y from X into Y .

1. f is injective (or one-to-one) if x 6= y implies f (x) 6= f (y) for all x , y ∈ X .

2. f is surjective (or onto) if for every y ∈ Y there exists x ∈ X such that f (x) = y .

3. f is bijective (or one-to-one correspondence) if f is both injective and surjective.
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Warm-Up Exercises

1. Consider the function f : Z×Z→ Z defined by f ((a, b)) = a−b + 3. Prove that f is onto.

2. Define f : Z→ Z× Z defined by f (x) = (2x , x2). Prove that f is injective.

3. Consider the function f : R → R defined by f (x) = x2. What is the preimage or inverse
image of [0, 4] under f ?
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Partially Ordered Sets



Poset

Definition

A (binary) relation R on a set A is called a partial order relation on A (or partial ordering on A)
if it is reflexive, transitive and antisymmetric. The set A together with R , o�en written (A,R),
is called a partially ordered set or poset.
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Example

Let R be a relation on R given by xRy if x ≤ y . Show that (R,R) is a poset.
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Example

Let W be a relation on N defined by xRy if x + y is even and x ≤ y . Show that W is a partial
ordering on N.
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Representation of a Poset

Let M = {1, 2, 3, 5, 6, 10, 15, 30}. The relation R defined by xRy if x divides y is a partial order
for M . A digraph representing the relations is given below. The simplified digraph is called the
Hasse diagram of the partial order R .
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Upper and Lower Bound

Definition

Let R be a partial order for a set A. Also, suppose that B is any subset of A.

1. An element a of A is a lower bound for B if aRb for all b ∈ B .

2. An element a of A is a upper bound for B if bRa for all b ∈ B .

Definition

Let R be a partial order for a set A. Also, suppose that B is any subset of A.

• We say that a ∈ A is a least upper bound for B (or supremum of B) if a is an upper bound
for B and aRx for every upper bound x for B .

• Analogously, a ∈ A is a greatest lower bound for B (or infimum of B) if a is a lower bound
for B and xRa for every lower bound x for B .

We write sup(B) and inf(B) to denote the supremum and infimum of B respectively.
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Example

1. For any set A, show that the power set P(A) of A with the relation⊆ is a poset.

2. Consider A = {1, 2, 3, 4, 5} and B = {{1, 2}, {1, 2, 3}, {1, 3}}. Given the poset (P(A),⊆),
find sup(B) and inf(B).
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Property

Theorem

Let (R,A) be a poset and B ⊆ A. If sup(B) exists then it must be unique. Similarly, if inf(B)

exists then it must also be unique.
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Smallest and Largest Element

Definition

Let R be a partial order on a set A. Assume B ⊆ A. If the greatest lower bound for B exists and
is an element of B , it is called the smallest or least element of B . Moreover, if the least upper
bound for B exists and is an element of B , it is called the largest or greatest element of B .
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Minimal and Maximal Element

Definition
Let R be a partial order on a set A. Assume B ⊆ A. The element b ∈ B is called a maximal
element for B . if there exists no y ∈ B such that xRy . Similarly, x is a minimal element for B
if there does not exist y ∈ B such that yRx .
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Example

Let M = {1, 2, 3, 5, 6, 10, 15}. The relation R defined by xRy if x divides y is a partial ordering
for M . What are the maximal and minimal elements of M?
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Linear Order

Definition

A partial ordering R on a set A is a linear or total ordering on A if it is comparable. We say that
the set together with the relation (A,R) is a linearly ordered set.
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Examples

1. The poset (R,≤) is a linearly ordered set.

2. The partial ordering⊆ on P(A) is not a linear ordering.
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Well-Ordered Set

Definition

Let L be a linear ordering on a set A. The linearly ordered set (A, L) is a well ordering on A if
every nonempty subset B of A contains a least element.

Theorem (Well-Ordering Theorem)
Every linearly ordered set can be well ordered.
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Exercises

1. Suppose that (A,R) is a partially ordered set. Show that
(
A,R−1

)
is also a partially ordered

set.

2. Let ∼ be the relation on N given by a ∼ b if there exists an integer k such that b = 2ka.
Show that∼ is a partial ordering on N.

3. Let (A,�) be a poset. Define a function f : A→ P(A) by f (a) = {x : x ∈ A and x � a}.
3.1 Prove that f is injective.
3.2 Prove that a � b if and only if f (a) ⊆ f (b). (In this case, we say that f is an order-preserving

function.)

4. Let R be a transitive and reflexive relation on the set A. Define a relation≈ on A by x ≈ y

if and only if xRy and yRx .
4.1 Show that ≈ is an equivalence relation on A.
4.2 Define a relation � on A/ ≈ by [x ] � [y ] if and only if xRy . Show that � is well-defined.
4.3 Show that (A/ ≈,�) is a poset.
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Might be Useful

Definition

Lei (A,R) be a partially ordered set. An element x of A is said to be an immediate successor of
y ∈ A if yRx and there does not exist an element z ∈ A such that y < z < x . Likewise, x ∈ A is
said to be an immediate predecessor of y ∈ A if yRx and there is no element z ∈ A such that
x < z < y .

Theorem

In a totally ordered set, immediate successors and immediate predecessors (when they exist)
are unique.
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Might be Useful (Continuation)

Definition
A partially ordered set in which every nonempty subset that is bounded above has a least upper
bound is said to have the least upper bound property. Analogously, a partially ordered set in
which every nonempty subset that is bounded below has a greatest lower bound is said to have
the greatest lower bound property.

Theorem
Every partially ordered set with the least upper bound property also has the greatest lower
bound property.
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Cardinality



Equinumerous Sets

Definition

A set A is said to have the same cardinality as B if there exists a bijection f : A → B from A

onto B . We also say that A is equinumerous to B . We write A ≈ B if A and B have the same
cardinality.
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Examples

1. The sets {1, 2, 3} and {a, b, c} are equinumerous.

2. The set Z of integers and the set E of even integers have the same cardinality.

3. The Cartesian product of the sets A and {b} has the same cardinality as A.
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Numerically Equivalent

Theorem

The relation≈ defined on any collection of sets is an equivalence relation.
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Some Theorems

Theorem
For any set A, A× {b} ≈ A.

Theorem
Let A1 ≈ A2 and B1 ≈ B2 such that A1 ∩ B1 = ∅ and A2 ∩ B2 = ∅. Then A1 ∪ B1 ≈ A2 ∪ B2.
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Finite and Infinite Sets

Definition

Let Sn = {j ∈ Z+ : 1 ≤ j ≤ n} = {1, 2, . . . , n}. A set A is said to be finite if A is empty or has
the same cardinality as Sn for some n ∈ Z+. The set A has cardinality n (or 0 for the empty
set), written |A| = n. If A is not finite, then A is infinite.
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Properties

Theorem

Any set B equinumerous to a finite set A is a finite set and |B| = |A|.

Corollary

The cardinality of a finite set is unique.

Theorem

If A is a finite set and x 6∈ A then A ∪ {x} is also finite and |A ∪ {x}| = |A|+ 1.

Corollary

If B is finite and x ∈ B , then B − {x} is finite and |B − {x}| = |B| − 1.
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Additional Results

Lemma

For each natural number m, if A ≈ Sm , then A is a finite set and |A| ≤ m.

Theorem

Every subset A of a finite set B is finite and |A| ≤ |B|.

Corollary

If B is a subset of a finite set A and B ≈ A, then B = A.

Theorem (Pigeonhole Principle)

For finite sets A and B , no injective function f : A→ B from A into B exists if |B| < |A|.
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Example

I have 7 pairs of socks in my drawer, one of each color of the rainbow. How many socks do I
have to draw out in order to guarantee that I have grabbed at least one pair?
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Denumerable Sets

Definition

A set D is said to be countably infinite or denumerable if D ≈ Z+. A countable set is a set
that is either finite or denumerable. A set is uncountable if it is not countable.
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Examples

1. The set N of natural numbers is infinite.

2. The set N of positive integers is denumerable.

3. The open interval (0, 1) is uncountable.

4. The set Q of rational numbers is countably infinite.
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Properties on Denumerable Sets

Theorem

A subset of a denumerable set is countable.

Corollary

A subset of a countable set is countable.

Corollary

If D is denumerable and f : A → D is injective, then A is countable. In addition, A is denu-
merable when A is infinite.

Corollary

The Cartesian product A× B of two denumerable sets A and B is denumerable.

Theorem

If A is countable and B is denumerable then A ∪ B is a denumerable.
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Dedekind-Infinite

Definition

A set D is said to be Dedekind-infinite if there exists a proper subset of D equinumerous to D .

Theorem

A set is Dedekind-infinite if and only if it is infinite.
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Might be Useful

Theorem

Let A and B be finite sets, |A× B| = |A| · |B| and |A× B| = |B × A|. Moreover, if {Ak}nk=1 is a
collection of finite sets then

|A1 × A2 × · · · × An| = |A1| · |A2| · · · · · |An|.

Theorem

Let A and B be disjoint finite sets. Then

|A ∪ B| = |A|+ |B|.

In general, if A and B are finite sets then

|A ∪ B| = |A|+ |B| − |A ∩ B|.
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Might be Useful (Continuation)

Corollary

For finite sets A and B ,
|A ∪ B| ≤ |A|+ |B|.

Theorem
Let A,B,C , and D be sets such that A ≈ C and B ≈ D , then A× B ≈ C × D .

Theorem

If A,B,C , and D are sets such that A ≈ C , B ≈ D and A ∩ B = ∅ and C ∩ D = ∅ then
A ∪ B ≈ C ∪ D .
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Might be Useful (Continuation)

Theorem

If A ⊆ B where B is a finite, then A is finite and |A| ≤ |B|.

Theorem

If A is a set with cardinality n, then |P(A)| = 2n .
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Might be Useful (Continuation)

Theorem

If A is denumerable, then A ∪ {x} is denumerable.

Corollary

If A is denumerable and B is finite, then A ∪ B is countably infinite.

Corollary

IfA is a finite collection of countable sets, then
⋃

A∈A A is countable.

Corollary

IfA is a denumerable family of countable sets, then
⋃

A∈A A is countable.
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Groups



Binary Operation

Definition

LetG be a set. A binary operation onG is a function that assigns each ordered pair of elements
of G to an element of G .

The condition which maps an ordered pair from G to an element in G is called the closure
property.
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Examples

1. The usual addition, subtraction, and multiplication of integers are binary operations.

2. Division of integers is not a binary operation.

3. The operations addition modulo n and multiplication modulo n on

Zn := {0, 1, . . . , n − 1}

are binary operations.

4. We define an operation ∗ on Z+ by a ∗ b = min{a, b}. Also, let ∗′ be an operation on Z+

such that a ∗′ b = a. The operations ∗ and ∗′ are binary operations on Z+.
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Definition of a Group

Definition

A (nonempty) set G together with a binary operation ∗ is a group, denoted by (G , ∗), under ∗
if the following properties are satisfied:

1. (Associativity) For all a, b, and c in G , we have (a ∗ b) ∗ c = a ∗ (b ∗ c).

2. (Existence of Identity) There exists e in G such that a ∗ e = e ∗ a = a for all a in G .

3. (Existence of Inverse) For each element a in G , there exists an element b in G such that
a ∗ b = b ∗ a = e .

The element e is called an identity of the group. The inverse b of a satisfies a ∗ b = b ∗ a = e ,
and we write b = a−1. A group with only one element (or consisting only of the identity
element) is called a trivial group.
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Examples

1. The set of integers Z, the set of rational numbers Q, and the set of real numbers R are
groups under the usual addition.

2. The set of integers Z under ordinary multiplication and under ordinary subtraction are
not groups. However, the set of positive rational numbers Q>0 and the set of nonzero
real numbers R∗ are groups under the usual multiplication.

3. The set S of positive irrational numbers together with the rational number 1 under
ordinary multiplication is not a group.

4. The set of 2× 2 matrices with real entries is a group under matrix addition. Moreover,
the set

GL(2,R) =

{[
a b

c d

]
: a, b, c , d ∈ R, ad − bc 6= 0

}
consisting of 2× 2 matrices with real entries and nonzero determinants is a group under
matrix multiplication. This group is called the general linear group of degree 2 over R.
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More Examples

1. Let G be a set consisting all real-valued functions on R, with the binary operation given
by pointwise addition of functions, that is, (f + g)(x) = f (x) + g(x) for all x ∈ R.

2. Given a positive integer n, the set Zn = {1, . . . , n − 1} is a group under addition +n

modulo n.

3. The following table defines a binary operation ∗ on the set S = {a, b, c}.

* a b c

a a b c
b b a c
c c b a

4. Let Z∗n = {x : gcd(x , n) = 1} where n ∈ Z+. The set Z∗n under multiplication ·n modulo n

is a group.
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More Examples

1. There are only two groups (up to an isomorphism) with exactly four elements. The first
group is (Z4,+4) and the second group is known as the Klein 4-group denoted as V
under the operation defined by the table

* e a b c

e e a b c
a a e c b
b b c e a
c c b a e
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Abelian Group

Definition
An Abelian or commutative group is a group G that has a commutative binary operation,
that is, a ∗ b = b ∗ a for every pair of elements a and b in G . Otherwise, we say that G is
non-Abelian.

Definition

Given a group (G , ∗), we say that (G , ∗) is a finite group if G is a finite set. Otherwise, (G , ∗)
is an infinite group. The number of elements in a group (G , ∗) is called the order of G
denoted by |G |. By assumption, the order of an infinite group is equal to∞.
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Exercises

1. Let ? be an operation on Z× Z defined by

(a, b) ? (c , d) = (ad + bc, bd).

Determine if the set Z× Z under ? is a group.

2. Let G = {a + b
√

2 ∈ R : a, b ∈ Q}. Prove that G is a group under ordinary addition.

3. Let G be the set of all non-constant linear functions, that is, functions f : R→ R of the
form f (x) = ax + b with a, b,∈ R and a 6= 0. Show that G is a group under the operation

x ∗ y =
x + y

1 + xy
.

4. A group (G , ∗) is Abelian when x2 = e for every x in G .
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Properties of a Group

Theorem

Let (G , ∗) be a group. Suppose a and b are any elements of G . The linear equations
a ∗ x = b and y ∗ a = b have unique solutions x and y in G . In particular, the identity of a
group and the inverse of every element in a group are unique.

Theorem

For a group G , the right and le� cancellation laws hold, that is, ba = ca implies b = c and
ca = cb implies a = b for all a, b, and c in G .

Theorem

For each element a in a group G , the inverse
(
a−1
)−1 of a−1 is a.
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Convention

We sometimes omit the operation ∗ and write ab to denote a ∗ b. Moreover, the expression an

for a positive integer n denotes the product

aa · · · a (n factors)

and an = e for n = 0.When n is negative,

an =
(
a−1)|n| .
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More Properties of a Group

Theorem (Socks-Shoes Property)

For any elements a and b of a group, (ab)−1 = b−1a−1.

Theorem

For any element a of a group and every integer m and n, we have

1. am+n = aman ,

2. (am)n = amn .
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Group Table and Properties

* e a b c

e e a b c
a a e c b
b b c e a
c c b a e

1. Every element of the gropu must appear once and only once in each row and column of
the table.

2. The group is Abelian if the matrix is symmetric along the diagonal.
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Group Isomorphism

Definition

Let (G , ∗) and (H, ?) be groups, and f : G → H . We say that f is a group isomorphism if f is
a bijective homomorphism, that is,

1. The function f is one-to-one and maps onto H .

2. For all a, b ∈ G , f (a ∗ b) = f (a) ? f (b).

We say that (G , ∗) is isomorphic to (H, ?) if there exists an isomorphism between (G , ∗)
and (H, ?).
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Properties of an Isomorphism

Theorem

Let f : G → H be a group isomorphism between (G , ∗) and (H, ?). Then f −1 : H → G is
also a group isomorphism.
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Examples

1. The groups (Z,+) and (2Z,+) are isomorphic.

2. The groups (Zn,+n) and
(

Z
nZ

,⊕
)

are isomorphic.
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Permutation

Definition

A permutation of a set A is a function φ : A→ A from a set into itself that is both
one-to-one and onto.

Theorem

The collection of all permutations of a set A into itself is a group under function
composition.

The group of all permutations on a set A forms a group called the symmetric group on A. By
considering A as the set Sn := {1, . . . , n}, we call the group as the symmetric group on n

letters.
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Two-Line Notation

A permutation σ on Sn can be expressed in the two-line notation shown below(
1 2 · · · n

σ(1) σ(2) · · · σ(n)

)
.

With this notation, the inverse of a permutation is given by(
σ(1) σ(2) · · · σ(n)

1 2 · · · n

)
.
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Examples

1. What are the elements of S2 and S3?

2. Consider the permutations on S6 given by

σ =

(
1 2 3 4 5 6
2 5 6 1 4 3

)
and δ =

(
1 2 3 4 5 6
1 4 2 6 5 3

)
.

What are σ ◦ δ and δ ◦ σ?
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Cycle Notation

Given a permutation on S6, (
1 2 3 4 5 6
2 1 4 6 5 3

)
,

it can be expressed in cycle notation as

(1 2)(3 4 6)(5)

A cycle of the form (a1 a2 . . . am) is called a cycle of length m or an m-cycle. Cycles that have
no entries in common are said to be disjoint.
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Examples

1. What is the cycle notation for (
1 2 3 4 5 6
5 3 1 6 2 4

)
?

2. Consider the permutations in S7 given by σ = (1 5 7 3) and δ = (2 4), compute for σδ and
δσ.
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Properties

Theorem

Every permutation of a finite set can be written as a cycle or as a product of disjoint cycles.

Theorem

Given any pair of disjoint cycles σ and δ, we must have σδ = δσ.

Theorem

Every permutation is a product of 2-cycles.
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MATH 120 (Algebraic Structures I) Topics

1. Binary Operation and Groups

2. Subgroups

3. Cyclic Groups

4. Permutation and Dihedral Groups

5. Factor or Quotient Groups

6. Cosets and Normal Groups

7. Lagrange’s Theorem

8. Group Homomorphisms and Isomorphisms

9. External Direct Product and Fundamental Theorem of Abelian Groups
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Questions?

65



References i

C. M. Campbell.
Introduction to AdvancedMathematics: A Guide to Understanding Proofs.
Brooks/Cole, 2012.

R. Hammack.
Book of Proof.
Richard Hammack, 3.2 edition, 2018.

M. W. Liebeck.
A Concise Introduction to Pure Mathematics.
Chapman & Hall/CRC, 2017.

N. R. Nicholson.
A Transition to Proof: An Introduction to AdvancedMathematics.
CRC Press, 2019.

66



References ii

C. E. Roberts.
Introduction to Mathematical Proofs: A Transition to AdvancedMathematics.
CRC Press, Taylor & Francis Group, 2015.

D. Smith, M. Eggen, and S. R. Andre.
A Transition to AdvancedMathematics.
Cengage Learning, 2015.

67


	Introduction
	Purpose of MATH 29
	DMCS-UPB Research Groups

	Review of Previous Topics
	Methods of Proving
	Set Theory Proofs
	Relations
	Functions

	Partially Ordered Sets
	Definitions and Examples
	Representation
	Extremal Elements in a Poset
	Subsets of a Poset
	Exercises

	Cardinality
	Definition and Examples
	Cardinality of Finite Sets
	Cardinality of Countably Infinite Sets
	Two Ways of Looking at Infinity

	Groups
	Binary Operation
	Definition and Examples
	Properties of a Group
	Non-Abelian Group Examples


