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Inquiry-Based Learning (IBL)

Definition
Inquiry-based learning is a learning process that engages stu-
dents by making real-world connections through exploration and
high-level questioning.

Instructors can run inquiry activities in the form of:
Case Studies
Group Projects
Research Projects
Field Work
Unique Exercises (tailored to the students)
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Types of IBL

Confirmation Inquiry
1. Give students the question and the answer.
2. Students investigate the method of reaching the answer.

Structured Inquiry
1. Give students an open question and an investigation method.
2. Students use the method to craft an evidence-backed conclu-
sion.

Guided Inquiry
1. Give students an open question.
2. Typically in groups, students design an investigation methods
to reach a conclusion.

Open Inquiry
1. Give students time and support.
2. Students pose questions that they investigate through their
own methods, and present the results to discuss and expand.
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Benefits of IBL

1. Reinforces Curriculum Content
2. Warms Up the Brain
3. Promotes a Deeper Understanding of Content
4. Helps Make Learning Rewarding
5. Builds Initiative and Self-Direction
6. Offers Differenttated Instruction
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IBL Strategies

1. Demonstrate How to Participate
2. Surprise Students
3. Use Inquiry When Traditional Methods Won’t Work
4. Understand When Inquiry Won’t Work
5. Don’t Wait for the Perfect question
6. Run a Check-In Afterwards
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Pillars of IBL

1. Students deeply engaged in rich mathematical sense making.
2. Regular opportunities for students to collaborate with peers
and instructors.

3. Instructor inquiry into student thinking.
4. Instructor focus on equity.
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Pillars of Grading for Equity

1. Clearly defined standards
2. Helpful feedback
3. Marks indicate progress
4. Reattempts without penalty
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Inclusivity and Equity in the Classroom

1. Use inclusive teaching practices and frameworks that encour-
age more students to be engaged more often.

2. Add an equity statement to signify the importance of inclu-
sion and equity. This helps create a positive learning environ-
ment in your class. Imaging a student of different nationality,
sitting in a room full of people not like her.

3. Use the students’ preferred pronouns.
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Reminders for Small Group Discussions and
Think-Pair-Share

1. Visit the groups the same number of times.
2. Raise softer voices and redirect louder voices.

▶ Rather than asking for volunteers, let the students talk among
the group first.

3. Avoid the question "Are there any questions...?" as it focuses
more on the louder voices.

4. "What did your group discuss?" is more inviting than ques-
tions putting the students in a higher stakes scenario. For
example, "What’s the right answer?" where it puts a student
to a right or wrong scenario rather than just sharing a though.
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Notations

∅ Empty Set
Z Set of Integers
Q Set of Rational Numbers
R Set of Real Numbers
C Set of Complex Numbers

Z+,Q+,R+ Positive Elements of Z,Q, and R
Z∗,Q∗,R∗,C∗ Nonzero Elements of Z,Q, R and C
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Group Theory as Study of Symmetry

The definition of a group is credited to Evariste Galois in his
study of symmetries among the roots of polynomials.
This may be observed in finding roots of simple polynomials.
For instance, if (x, y) is a solution of the equation

x2 + y2 − 4 = 0,

then (y, x) is also a solution since x2 + y2 = y2 + x2.

10 264



Symmetry in a Plane

Definition
A rigid motion in the plane is a bijective function f : R2 → R2 such
that, for all x, y ∈ R2, the "distance" between f (x) and f (y) is the
same as the "distance" between x and y.

The four rigid motions in the plane are as follows:
1. Translation
2. Rotation

▶ Spinning an object around its rotocenter or center of rotation
by a fixed amount called the rotation angle.

3. Reflection
▶ Mirror images of all points across the axis of reflection.

4. Glide Reflection
▶ Reflection followed by translation parallel to the axis of reflec-
tion.
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Symmetries of a Regular Polygon

Definition
A symmetry of a geometric object O is a rigid motion f such that
f (O) = O.

Note that every symmetry is either a rotation or a reflection.
We can completely identify a symmetry of a regular polygon
by only considering the mapping of the vertices. We denote
the set of vertices of an n-gon by

Vn := {v1, . . . , vn} ∼= {1, . . . ,n}.

where ∼= represents an isomorphism.
A symmetry of a regular n-gon is a bijection σ : Vn → Vn such
that if the unordered pair {vi, vj} consists of the end points
of an edge of the n-gon, then {σ(vi), σ(vj)} also contains the
endpoints of an edge.
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Symmetries of a Triangle

There are six symmetries of a triangle. These are the bijections
from V3 onto V3 given by:
ρ0: 1→ 1, 2→ 2, and 3→ 3.
ρ1: 1→ 2, 2→ 3, and 3→ 1.
ρ2: 1→ 3, 2→ 1, and 3→ 2.
µ1: 1→ 1, 2→ 3, and 3→ 2.
µ2: 1→ 3, 2→ 2, and 3→ 1.
µ3: 1→ 2, 2→ 1, and 3→ 3.
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Property

We denote the set of symmetries of the regular n-gon as D2n and
call it the set of dihedral symmetries.

Theorem
The cardinality of D2n is 2n. In symbols, |D2n| = 2n.

Proof.
Consider any element v1 from Vn. For a symmetry σ, suppose that
{v1, v2} is an edge. A symmetry can map n elements to v1. How-
ever, σ must map v2 to a vertex adjacent to σ(v1). Note that there
are only two possible ways. Once σ(v1) and σ(v2) are known, all
remaining σ(vi) for 3 ≤ i ≤ n are determined.
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Elements of the Dihedral Set

The elements of D2n are composed of
n rotations, and
n reflection symmetries.

We can compose two functions from D2n. Observe the composi-
tions of the elements of D2n by looking at the table below.

◦ ρ0 ρ1 ρ2 µ1 µ2 µ3
ρ0 ρ0 ρ1 ρ2 µ1 µ2 µ3
ρ1 ρ1 ρ2 ρ0 µ2 µ3 µ1
ρ2 ρ2 ρ0 ρ1 µ3 µ1 µ2
µ1 µ1 µ2 µ3 ρ0 ρ2 ρ1
µ2 µ2 µ1 µ3 ρ1 ρ0 ρ2
µ3 µ3 µ2 µ1 ρ2 ρ1 ρ0
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Symmetries of a Square

Exercise
Find the symmetries of a square. Construct the operation table
between elements of D4 with function composition as the opera-
tion.
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Addition Modulo Twelve (12)

Consider the set Z12 := {0, 1, . . . , 11} of integers between zero
(0) and eleven (11). For any a,b ∈ Z12, the operation addition
modulo 12 +12 is defined as

a+12 b = c or a+ b = c (mod 12)

where c is the remainder when a+ b is divided by 12.
This resembles finding the time after n hours, where 0 repre-
sent 12:00 AM or PM.
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Addition Modulo Twelve (12) Table

Exercise
Construct the operation table between elements of Z12 with addi-
tion modulo 12 as the operation.
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Binary Operation

Definition
A binary operation on a set S is a function that assigns each or-
dered pair of elements of S to an element of S.

Definition (Restated)
A binary operation or law of composition on a set S is a function
from S× S into S.

The condition which maps an ordered pair from S to an element
in S is called the closure property. In this case, we say that S is
closed under the binary operation.
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Remarks

Let ⋆ be a binary operation on S. We denote the image ⋆ ((a,b)) of
each ordered pair (a,b) ∈ S× S by a ⋆ b.
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Familiar Examples of Binary Operations

1. Addition of integers is a binary operation.
2. Subtraction of integers is _________ binary operation.
3. Subtraction of positive integers is _________ binary opera-
tion.

4. Multiplication of integers is _________ binary operations.
5. The integers from the previous examples can be replaced by
_________ numbers or _________ numbers.

6. Division of integers is _________ binary operation.
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Familiar Examples of Binary Operations

1. Addition of integers is a binary operation.
2. Subtraction of integers is a binary operation.
3. Subtraction of positive integers is not a binary operation.
4. Multiplication of integers are binary operations.
5. The integers from the previous examples can be replaced by
rational numbers or real numbers.

6. Division of integers is not a binary operation.
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Other Examples of Binary Operations

1. The operations addition modulo n and multiplication modulo
n on

Zn := {0, 1, . . . ,n− 1}

are binary operations.

2. LetM(R) be the set of all matrices with real entries. The usual
matrix addition is not a binary operation on M(R). The set
Mm×n(Q), containing all m× n matrices with rational entries,
is closed under the usual matrix addition.

3. We define an operation ∗ on Z+ by a ∗ b = min{a,b}. The
set Z+ is closed under ∗. (This operation is programmed into
modern GPS systems.)

4. We also define ∗′ as an operation on Z+ such that a ∗′ b = a.
The set Z+ is also closed under ∗′.
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Induced Operation on a Subset

Definition
Let ∗ be a binary operation on S and H be a subset of S. The binary
operation on H given by restricting ∗ to H is the induced operation
of ∗ on H.

Definition (Restated)
Let ∗ be a binary operation on S. We say that ∗ is an induced op-
eration on H ⊂ S if H is closed under ∗.
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Examples

1. The set Z is _________ under ordinary subtraction− butZ+ ⊂
Z is _________ under −.

2. The set 3Z containing integermultiples of 3 under the induced
operation on (Z,+) is _________ induced operation on 3Z.
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Examples

1. The set Z is closed under ordinary subtraction − but Z+ ⊂ Z
is not closed under −.

2. The set 3Z containing integermultiples of 3 under the induced
operation on (Z,+) is an induced operation on 3Z.

Exercise
Let + and · denote addition and multiplication respectively on Z.
Define the set

H = {n2 : n ∈ Z+}.

Prove that H is closed under · but not closed under +.
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Commutative Binary Operation

Definition
A binary operation ∗ on a set S is commutative if

a ∗ b = b ∗ a

for all a and b in S.
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Examples

1. The operations addition and multiplication on the sets Z+, Z,
Q+, Q, R+, and R are _________ commutative binary opera-
tions.

2. Consider the binary operation ∗′ on Z+ where a ∗′ b = a. The
binary operation ∗′ is _________ commutative.

3. Let + be a binary operation defined on R× R such that

(a,b) + (c,d) = (a+ c,b+ d).

Show that + is commutative.
4. Let ∗ be a binary operation defined on Z such that

a ∗ b = 2ab+ 3.

Is ∗ commutative?
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Examples

1. The operations addition and multiplication on the sets Z+, Z,
Q+, Q, R+, and R are commutative binary operations.

2. Consider the binary operation ∗′ on Z+ where a ∗′ b = a. The
binary operation ∗′ is not commutative.

3. Let + be a binary operation defined on R× R such that

(a,b) + (c,d) = (a+ c,b+ d).

Commutativity of+ follows from the commutativity of+ in R.
4. Let ∗ be a binary operation defined on Z such that

a ∗ b = 2ab+ 3.

The operation ∗ is commutative.
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Associative Binary Operation

Definition
A binary operation on a set S is associative if

(a ∗ b) ∗ c = a ∗ (b ∗ c)

for all a,b, and c in S.
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Examples

1. The operations addition and multiplication on the sets Z+,
Z, Q+, Q, R+, and R are _________ binary operations.

2. Consider the binary operation ∗′ on Z+ where
a ∗ b = min{a,b}. The binary operation ∗ is _________.

3. Let F be the set of all real-valued functions with domain R.
The operations addition, subtraction, multiplication, and
composition for functions are _________ binary operations.

4. Let ∗ be the binary operation on R where a ∗ b = ab+ a+ b.
Is ∗ associative?
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Examples

1. The operations addition and multiplication on the sets Z+, Z,
Q+, Q, R+, and R are associative binary operations.

2. Consider the binary operation ∗′ onZ+ where a∗b = min{a,b}.
The binary operation ∗ is associative.

3. Let F be the set of all real-valued functions with domain R.
The operations addition, multiplication, and composition for
functions are associative binary operations.

4. Let ∗ be the binary operation on R where a ∗ b = ab+ a+ b.
Is ∗ associative?
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Identity Element for a Binary Operation

Definition
Let ∗ be a binary operation on a set S. An element e ∈ S is called
an identity element for ∗ if

a ∗ e = e ∗ a = a

for all a ∈ S.
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Examples

1. The element _________ is an identity element for × while the
element _________ is an identity element with respect to +.

2. The set Z∗ has _________ with respect to +.
3. The setMm×n(R) under the usualmatrix addition has _________.
4. The operation ∗′ on Z+ where a ∗′ b = a has _________.
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Examples

1. The element 1 ∈ Zn,Z,Q,R is an identity element for × while
the element 0 ∈ Zn,Z,Q,R is an identity elementwith respect
to +.

2. However, the set Z∗ has no identity element with respect to
+.

3. The setMm×n(R) under the usual matrix addition has an iden-
tity element given by zero matrix defined as a matrix whose
entries are all zero.

4. The operation ∗′ on Z+ where a ∗′ b = a has no identity ele-
ment.
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Uniqueness of Identity

Theorem
A set with binary operation ∗ has at most one identity element.

Proof.
Let S be a set closed under ∗. If there is no identity element for ∗,
then the conclusion holds. Suppose that e1 is an identity element
for ∗. Furthermore, we assume that e2 is another identity element
for ∗. By definition, e1 and e2 must be in S. Also, for all a ∈ S,

a ∗ e1 = e1 ∗ a = a

and
e2 ∗ a = a ∗ e2 = a.

Thus, e1 = e2 ∗ e1 = e1 ∗ e2 = e2.
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Language

Let A be a set which is called an alphabet. We define

An = {a1a2 . . .an : ai ∈ A}

to be the set of all sequences (or strings) of n elements of A. El-
ements of An are called words of length n over A. The empty se-
quence, denoted by Λ, is a word of length 0. Moreover, we denote
the set of all words over A as

FM(A) =
∞⋃
n=0

An

where A0 = {Λ}.
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String Concatenation

We define the operation ∗ on FM(A), called string concatenation,
by

a1a2 . . .an ∗ b1b2 . . .bm = a1a2 . . .anb1b2 . . .bm.

Exercise
Show that the operation string concatenation ∗ on the set FM(A) is
an associative binary operation with an identity element. The set
FM(A) equipped with ∗ is called the free monoid generated by the
set A. For more information, you can read about formal language
theory.
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Inverse of an Element

Definition
Let x be an element in a set S and ∗ be a binary operation on
S. Suppose that e is an identity element with respect to ∗. The
inverse of x is an element x′ ∈ S such that x ∗ x′ = x′ ∗ x = e.
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Examples

1. The inverse of the element 2 ∈ Z under usual addition is
_________. Moreover, the inverse of the same element in Zn
under addition modulo n is _________. In general, the inverse
of any a ∈ Z is _________ and any a ∈ Zn is _________.

2. The inverse of the element 2 ∈ Z under usual multiplication
_________. However, the inverse of the same element in Q
under usual multiplication is _________. In general, the in-
verse of any a ∈ Q is _________.

3. AnymatrixM inMm×n(R) has inverse, with respect to the usual
matrix addition, given by _________.
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Examples

1. The inverse of the element 2 ∈ Z under usual addition is −2.
Moreover, the inverse of the same element in Zn under addi-
tion modulo n is n− 2. In general, the inverse of any a ∈ Z is
−a and any a ∈ Zn is n− a.

2. The inverse of the element 2 ∈ Z under usual multiplication
does not exist. However, the inverse of the same element in
Q under usual multiplication is 1/2. In general, the inverse of
any a ∈ Q is 1/a.

3. AnymatrixM inMm×n(R) has inverse, with respect to the usual
matrix addition, given by the matrix whose entries consists of
the inverse of each entry in M.
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−a and any a ∈ Zn is n− a.
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does not exist. However, the inverse of the same element in
Q under usual multiplication is 1/2. In general, the inverse of
any a ∈ Q is 1/a.
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Other Terminologies

1. A set S, together with one or more operations on S, is called
algebraic system or algebraic structure. The set S is called
the underlying set of the structure.

2. A set equipped with one binary operation ∗ is referred to as a
magma or a groupoid or quasigroup, denoted by (S, ∗).

3. A semigroup is an algebraic structure consisting of a non-
empty set equipped with an associative binary operation.

4. A monoid is a semigroup having an identity element.
5. The identity element may also be called the unit element.
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Terminologies and Examples



Definition of a Group

Definition
A (nonempty) set G together with a binary operation ∗ is a group,
denoted by (G, ∗), under ∗ if the following properties holds:

a ∗ (b ∗ c) = (a ∗ b) ∗ c for all a,b, c ∈ G,
there exists e ∈ G such that

a ∗ e = e ∗ a = a

for all a ∈ G, and
for each a ∈ G, there exists a−1 ∈ G where

a ∗ a−1 = a−1 ∗ a = e.
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Trivial Group

The four defining postulates for a group are referred to as the
group axioms. A group with only one element (or consisting only
of the identity element) is called a trivial group.
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Remarks

Definition (Restated)
A group is a nonempty setG under an associative binary operation,
such that G contains an identity element for the operation, and
each element of G has an inverse in G.

Definition
Let (G, ∗) be a group. The cardinality of G is called the order of G.
We say that G is a finite group if its order is finite; otherwise, it is
an infinite group.
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Remarks

Definition (Restated)
A group is a nonempty setG under an associative binary operation,
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Examples

1. The sets Z, Q, and R are _________ under the usual addition.
Moreover, the set Q+ and the set of nonzero real numbers R∗
are _________ under the usual multiplication.

2. The set Z under ordinary multiplication is _________. The
same set under ordinary subtraction is _________.

3. The set (R+ −Q)∪ {1} under usualmultiplication is _________.
4. The set

GL(2,R) =
{[
a b
c d

]
: a,b, c,d ∈ R,ad− bc 6= 0

}
consisting of 2× 2 matrices with real entries and nonzero de-
terminants is _________ under matrix multiplication.

46 264



Examples

1. The sets Z, Q, and R are infinite groups under the usual addi-
tion. Moreover, the set Q+ and the set of nonzero real num-
bers R∗ are infinite groups under the usual multiplication.

2. The set Z under ordinary multiplication is not a group. The
same set under ordinary subtraction is also not a group.

3. The set (R+ −Q) ∪ {1} under usual multiplication is not a
group.

4. The set

GL(2,R) =
{[
a b
c d

]
: a,b, c,d ∈ R,ad− bc 6= 0

}
consisting of 2× 2 matrices with real entries and nonzero de-
terminants is an infinite group under matrix multiplication.
This is called the general linear group of degree 2 over R.
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More Examples

1. Consider the set F consisting of all real-valued functions de-
fined on R. The algebraic structures (F,+), (F,−), (F, ·), and
(F, ◦) are infinite groups.

2. For each positive integer n, Zn is a finite group of order n un-
der addition modulo n.

3. Let U(n) := {x : gcd(x,n) = 1 and x < n} where n ∈ Z+. The
set U(n) under multiplication modulo n is a finite group of
order ϕ(n)where ϕ is the Euler-phi number theoretic function.
This group is called the group of units of Zn.

4. We can form a new group from two groups (A,⊕) and (B,⊗)
through the direct product (A × B, ·) whose elements belong
in the Cartesian product A × B. The operation · on the direct
group is defined as follows:

(a1,b1) · (a2,b2) = (a1 ⊕ a2,b1 ⊗ b2).
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Group under a Set Operation

Exercise
Let S be a set with at least one element. The power set P(S) of S
is defined as the collection of all subsets of S. In other words,

P(S) = {A : A ⊂ S}.

Identify the group axioms not satisfied by the pair (P(S),∪) where
∪ is the union operation of sets.
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Quaternion Group

Exercise

Let 1 =

(
1 0
0 1

)
, I =

(
0 1
−1 0

)
, J =

(
0 i
i 0

)
, and K =

(
i 0
0 −i

)
where i2 = −1.
1. Verify that the relations I2 = J2 = K2 = −1, IJ = K, JK = I,
KI = J, JI = −K, KJ = −I, and IK = −J hold.

2. Show that the set Q8 = {±1,±I,±J,±K} is a group. This group
is called the quaternion group.
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Abelian Group

Definition
An Abelian or commutative group is a group G that has a commu-
tative binary operation. Otherwise, we say that G is non-Abelian
or noncommutative.
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Examples

1. The sets Z, Q, and R are _________ groups under the usual
addition. Moreover, the set Q+ and the set of nonzero real
numbers R∗ are _________ group under the usual multiplica-
tion.

2. The general linear group of degree 2 overR is _________ group.
3. The groups (F,+), (F,−), (F, ·), and (F, ◦) are _________.
4. The groups (Zn,+n) and (Zn, ·n), where +n and ·n denotes ad-
ditionmodulo n andmultiplicationmodulo n respectively, are
_________.
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Examples

1. The sets Z, Q, and R are Abelian groups under the usual ad-
dition. Moreover, the setQ+ and the set of nonzero real num-
bers R∗ are Abelian groups under the usual multiplication.

2. The general linear group of degree 2 over R is a non-Abelian
group.

3. The groups (F,−) and (F, ◦) are non-Abelian.
4. The groups (Zn,+n) and (Zn, ·n), where +n and ·n denotes ad-
ditionmodulo n andmultiplicationmodulo n respectively, are
Abelian.
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Exercises

1. Let G = R+ − {1}. Let ∗ be a function on G defined by a ∗ b =
aln b for all a and b in G. Prove that G is an Abelian group with
respect to ∗.

2. Let fm,b : R → R be a function where fm,b(x) = mx + b. Show
that the set A = {fm,b : R → R | m 6= 0} of affine func-
tions from R into R forms a non-Abelian group under com-
position of functions. Furthermore, show that the group (A, ◦)
is Abelian when m = 1.
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Where Do We See Abelian Groups?

The set of complex numbers C := {a + bi : a,b ∈ R} under
addition + and multiplication · defined by

(a+ bi) + (c+ di) = (a+ c) + (b+ d)i

and
(a+ bi) · (c+ di) = (ac− bd) + (ad+ bc)i

is an Abelian group. For more information, consult complex
analysis references.
A vector space V over a field F is an algebraic system with two
operations vector addition + and scalar multiplication · that
satisfies many properties similar to the field axioms. (V,+)
being an Abelian group is one of those properties. For more
information, consult linear algebra references.
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Where Do We See Abelian Groups?

A ring (R,+, ·) is a set R under a collection of two operations,
+ and ·, namely addition andmultiplication that also satisfies
a certain number of conditions. One of the conditions states
that (R,+) must be Abelian. For more information, consult
abtract algebra references.
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Cayley Tables



Table Representation of Binary Operations

For a finite set G, a binary operation ∗ on G can be defined by a
table. We list the elements in the top (left to right) and left side
(top to bottom) in the same order. For instance, consider the table
below which defines a binary operation ∗ on G = {a,b, c} that
follows the rule, x ∗ y where x is an element in the left and y is an
element in the top, in computing the image under ∗.

∗ a b c
a b c b
b a c b
c c b a

.
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Table Representation of Groups

∗ a b c
a b c b
b a c b
c c b a

.

Operation ∗ is not commutative since a ∗ b = c 6= a = b ∗ a.

There is no identity element for ∗ since there exists no e ∈ G
such that x ∗ e = e ∗ x = x for all x in G.
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Table Representation of Groups (cont.)

The binary operation ∗ is commutative if and only if the Cayley
table is symmetric with respect to the main diagonal.

If the operation has an identity element, which is unique, then
there exists a column and a row similar to the left and top
sides respectively.
Verifying whether the operation is associative is a tedious
process. We may use Light’s associativity test but we omit
it here since it is also a tedious approach.
The identity element and inverse of each element may be
glanced through the Cayley table.
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Example (Klein 4-Group)

∗ e a b c
e e a b c
a a e c b
b b c e a
c c b a e

Let V = {e,a,b, c}. The Cayley table shows the Abelian group (V, ∗)
under the binary operation ∗. The group is known as the Klein
four-group.
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Exercises

1. Construct the Cayley table for the group U(9) under multipli-
cation modulo 9 denoted by ×9

1.
1.1 What is the identity element?
1.2 Determine the inverse of each element under ×9.
1.3 Determine whether the group is Abelian or not.

1The remainder when the product of the two numbers are divided by 9.
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Exercises

Consider the set S = {a1, . . . , a6} and the operation · on S defined
by the following table.

· a1 a2 a3 a4 a5 a6
a1 a1 a2 a3 a4 a5 a6
a2 a2 a1 a5 a6 a3 a4
a3 a3 a6 a1 a5 a4 a2
a4 a4 a5 a6 a1 a2 a3
a5 a5 a4 a2 a3 a6 a1
a6 a6 a3 a4 a2 a1 a5

Is S a group under ·? If so, determine the identity element and
the inverse of each non-identity element.
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Groups

Properties of a Group



Weaker Group Definition

Theorem
A nonempty set G under an associative binary operation, such that
G contains a left identity element, and each element of G has a left
inverse in G is a group.
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Proof.
Let g−1 be the left inverse of every g ∈ G and e be a left identity.
Observe that

g ∗ g−1 = (e ∗ g) ∗ g−1 =
[(
g−1

)−1 ∗ g−1] ∗ g] ∗ g−1
=

(
g−1

)−1 ∗ (g−1 ∗ g) ∗ g−1 = (
g−1

)−1 ∗ g−1 = e.

This shows that g−1 is also the right inverse for g. Moreover,

g ∗ e = g ∗ (g−1 ∗ g) = e ∗ g = g.

Thus, e is also the right identity. The conclusion follows.
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Uniqueness of Solutions

Theorem
Let (G, ∗) be a group. Suppose a and b are any elements of G. The
linear equations a ∗ x = b and y ∗ a = b have unique solutions x
and y in G. In particular, the inverse of every element in a group
are unique.

Proof.
The linear equations a∗x = b and y∗a = b has respective solutions
given by x = a−1b ∈ G and y = ba−1 ∈ G. Let x1 and x2 be solutions
of a∗x = b. Hence, a∗x1 = a∗x2. Thus, a−1 ∗ (a∗x1) = a−1 ∗ (a∗x2)
or x1 = x2. Similar arguments can be made for the linear equation
y ∗ a = b. Therefore, the linear equations have unique solutions
in G. In particular, if we let b = e, where e is the identity element
of (G, ∗), then a ∗ x = y ∗ a = e has unique solutions in G.
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Notations

For simplicity, we omit the operation ∗ and write ab to denote
a ∗ b. We also write a group (G, ∗) simply as G assuming the
binary operation is well-understood.
Moreover, the expression an for a positive integer n and an
element a ∈ G denotes the repeated application of the binary
operation

aa · · ·a (n factors)

and an = e for n = 0. When n is negative,

an =
(
a−1

)|n|
.
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Exponential Laws

Theorem
Let G be a group. Suppose that a ∈ G. For any integers n and m,
we have
1. anam = an+m, and
2. (an)m = anm.

67 264



Cancellation Laws

Theorem
For a group G, ba = ca implies b = c and ca = cb implies a = b for
all a,b, and c in G. In other words, the left and right cancellation
laws hold.

Proof.
Since a and c are in G, their inverses exists. Hence,

(ba) ∗ a−1 = (ca) ∗ a−1 and c−1 ∗ (ca) = c−1 ∗ (cb)

holds. Using the associative law and simplifying, we must have
b = c and a = b respectively.
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Remarks

A magma is left cancellative (or right cancellative) if the left
cancellation (or right cancellation) law holds.
The previous theorem states that a group must be left and
right cancellative.
This result shows that an elementmust only appear once each
column and each row for a Cayley table representation of a
group.
In combinatorics, a Latin square is an n× n array filled with n
different symbols such that each symbol appears exactly once
in each column and exactly once in each row.
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Inverse of the Inverse

Theorem
For each element a in a group G, the inverse (a−1)−1 of a−1 is a.

Proof.
The theorem follows from the definition and the uniqueness of
the inverse of a group element.
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Inverse of the Inverse

Theorem
For each element a in a group G, the inverse (a−1)−1 of a−1 is a.

Proof.
The theorem follows from the definition and the uniqueness of
the inverse of a group element.
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Generalized Associative Law

Theorem
For any elements a1,a2, . . . , an ∈ (G, ∗) where (G, ∗) is a group un-
der the binary operation ∗, the value a1∗a2∗· · ·∗an is independent
of how the expression is bracketed.
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Socks-Shoes Property

Theorem (Socks-Shoes Property)
For any elements a and b of a group, (ab)−1 = b−1a−1.

Proof.
Note that

(ab)
(
b−1a−1

)
= a

(
bb−1

)
a−1 = aea−1 = aa−1 = e

and (
b−1a−1

)
(ab) = b−1

(
a−1a

)
b = b−1eb = b−1b = e.

Since the inverse of a group element is unique, (ab)−1 = b−1a−1.
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Exercises

1. Let G be a group having no elements of order 3. Suppose that

(ab)3 = a3b3

for any elements a and b in G. Show that G is Abelian.
2. Let G = {0, 1, 2, 3, 4, 5, 6, 7} and assume that G is a group
under a binary operation ∗ that satisfies the following
properties:
▶ a ∗ b ≤ a+ b for all a,b ∈ G, and
▶ a ∗ a = 0 for all a ∈ G.

Write out the Cayley table for G.
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Subgroups

Terminologies and Examples



Definition

Definition
A subset H of a group G is a subgroup of G if H is a group under
the induced operation from G. We let H ≤ G denote that H is a
subgroup of G. Also, let H < G denote that H ≤ G and H 6= G.
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Examples

1. (Z,+) is a subgroup of (R,+).
2. (Q+, ·) is a subgroup of (R+, ·).
3. The set of continuous real-valued functions with domain R is
a subgroup of F under function addition.
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Remarks

The largest subgroup of a group G is G itself. We call this sub-
group the improper subgroup of G.

Any subgroup H of G such that H 6= G are called proper sub-
groups.
The smallest subgroup of G is the group {e} consisting of the
identity element for the operation. This subgroup is referred
to as the trivial subgroup of G.
Any subgroup of G not equal to the trivial subgroup is a non-
trivial subgroup.
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Subgroup Relation (Revisited)

Recall that a partial order relation is a reflexive (or homogeneous)
relation that is both antisymmetric and transitive.

Observe that the relation ≤ defined for subgroups is a partial or-
der relation. Hence, we can construct a Hasse diagram relating the
subgroups of a group G. We also call this diagram as the lattice
diagram for subgroups.
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Examples

The subgroups of the Klein-4 group V are {e}, {e,a}, {e,b}, {e, c},
and V.

The lattice diagram is given by
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Exercise

1. Find the subgroups of the group (Z4,+4) and construct the
lattice diagram for subgroups of (Z4,+4).

2. Find the subgroups of the Quaternion group and construct the
lattice diagram for subgroups of the group.
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Subgroups

Subgroup Tests



Two-Step Subgroup Test

Definition
LetH be a subset of a groupG. We say thatH is closedunder taking
inverses if a−1 ∈ H for any a ∈ H under the induced operation on
H.

Theorem (Two-Step Subgroup Test)
A subset H of a group G is a subgroup of G if and only if
1. H is non-empty,
2. H is closed under the binary operation defined on G, and
3. H is closed under taking inverses.
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Proof of the Two-Step Subgroup Test

Proof.
Note that associative law holds for any elements in a subset of G.
Thus, the theorem is proven.
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One-Step Subgroup Test

Theorem
A nonempty subset H of the group G is a subgroup of G under the
induced operation on H if and only if ab−1 ∈ H for any a and b in
H.

Proof.
Proof for the necessary part of the theorem clearly follows. Sup-
pose ab−1 ∈ H for all a,b ∈ H. Associative law clearly holds in
H. Since H is non-empty, there exists an element x ∈ H. Hence
xx−1 = e ∈ H. Moreover, ex−1 = x−1 ∈ H. Thus, H is closed
under taking inverses. Lastly, suppose that y ∈ H. Therefore,
x (y−1)−1 = xy ∈ H and H is closed under the induced operation
from G.
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Finite Subgroup Test

Theorem
Let H be any non-empty finite subset of a group G. If H is closed
under the binary operation on G, then H is a subgroup of G.

Proof.
Suppose that H is closed under the binary operation on G. We
only need to prove H is closed under taking inverses. If a = e,
then a−1 = a ∈ H. Suppose a 6= e. Consider the set {an : n ∈ Z+}.
Since H is closed, an ∈ H for each n ∈ Z+. By the assumption that
H is finite, ax = ay for some x, y ∈ Z+ such that x 6= y. Without
loss of generality, we assume that x > y. Thus, ax−y = e where
x − y > 1 since a 6= e. It follows that aax−y−1 = e or a−1 = ax−y−1.
Observe that x − y − 1 ≥ 1. Hence, ax−y−1 ∈ {an : n ∈ Z+}. By the
two-step subgroup test, the conclusion follows.
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Exercises

1. The center Z(G) of a group G is a subset of G containing ele-
ments that commute with every element of G. That is,

Z(G) := {a ∈ G : ag = ga for all g ∈ G}.

Prove that the center of a group G is a subgroup of G.
2. The centralizer C(a) of an element a of a group G is a subset
of G containing elements that commute with a. In symbols,

C(a) := {g ∈ G : ag = ga}.

Prove that the centralizer of a is a subgroup of G for each el-
ement a in a group G.
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Exercises (cont.)

3. Let G be a group and A be a non-empty subset of G. The nor-
malizer of A in G is defined as

NG(A) = {g ∈ G : gAg−1 = A}

where gAg−1 = {gag−1 : a ∈ A}. Prove that the normalizer of
A in G is a subgroup of G.

4. Let H and K be subgroups of an abelian group G. Show that
the set {hk : h ∈ H, k ∈ K} under the induced operation from
G is a subgroup of G.
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Exercises (cont.)

5. Prove that the intersection H∩K of two subgroups H and K of
a group G is a subgroup of G.

6. Prove that D is a subgroup of (F,+) where D consists of dif-
ferentiable real-valued functions with domain R. Moreover,
show that {f ∈ D : df/dx is constant} is a subgroup of D.
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Additional Notes

In the Two-Step Subgroup Test, some references replace the
requirement for a subgroup H of a group G to be non-empty
by showing that the identity element in G also lies in H.
A finite group G cannot be written as a union of two finite
proper subgroups of G.
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Cyclic Groups



Cyclic Groups

Terminologies and Examples



Cyclic Subgroup

Theorem
Let G be a group. Suppose that a is any element of G. The set

〈a〉 := {an : n ∈ Z}

is a subgroup of G under the binary operation on G. Furthermore,
〈a〉 is the smallest subgroup of G that contains a, that is, every
subgroup containing a contains 〈a〉. The subgroup 〈a〉 is called
the cyclic subgroup generated by a.
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Proof

Proof.
Note that e = a0 ∈ G. Suppose that x, y ∈ 〈a〉. Then x = am and
y = an for some m,n ∈ Z. Since

xy−1 = am (an)−1 = am−n

and am−n ∈ 〈a〉, xy−1 ∈ 〈a〉. Thus, 〈a〉 is a subgroup of G.
Now, suppose that H is a subgroup containing a. This implies that
a−1 is also in H. By the closure property, an ∈ H for any n ∈ Z.
Therefore, H contains 〈a〉.
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Examples

1. What is the cyclic subgroup generated by 3 in Z12?
2. What is the cyclic subgroup generated by 4 in Z18?
3. What is the cyclic subgroup generated by 5 in U(12)?
4. What is the cyclic subgroup generated by 5 in U(7)?
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Examples

1. {0, 3, 6, 9}

2. {0, 2, 4, 6, 8, 10, 12, 14, 16}
3. {1, 5}
4. U(7)
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Cyclic Group

Definition
An element a of a group G generates G if 〈a〉 = G. We also say that
a ∈ G is a generator for G.

Definition
A group G is said to be cyclic if there exists an element that gen-
erates G.
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Examples

1. The group Z8 is _________.
2. The Klein four-group is _________.
3. The group of units U(9) in Z9 is _________.
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Examples

1. The group Z8 is cyclic with generator 1. The elements 3, 5,
and 7 are also generators of the group.

2. The Klein four-group is not cyclic.
3. The group of units U(9) in Z9 is cyclic with generator 2.
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Subset of Words

Definition
Let S be a non-empty subset of a group G. We define 〈S〉 as the
subset of words made from elements in S. In symbols,

〈S〉 = {sα11 · · · sαnn : n ∈ Z≥1, si ∈ S, αi ∈ Z}.
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Subgroup Generated by a Subset

Theorem
For any non-empty subset S of a group G, 〈S〉 ≤ G. The subgroup
〈S〉 is called the subgroup generated by S. The elements of S are
called the generators of G.
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Finitely Generated Group

Definition
A group is said to be finitely-generated if it is generated by a
finite subset.
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Examples

1. Cyclic groups are finitely-generated groups.
2. Finite groups are finitely-generated.
3. The Klelin-4 group is finitely-generated.
4. The Quaternion group is finitely-generated.
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Group Presentation

We can produce all elements from the set of generators, but the
structure of G is determined by the interaction of generators with
each other. We call the pair consisting of the generating subset S
and the set of relations among these generators as a presentation
of the group G. We denote a group presentation by

〈S : relations〉.
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Examples

1. Let a be the generator of a group G of order n. The presenta-
tion of G is

〈a : an = e〉.

2. The presentation of the Quaternion group is

〈i, j : i2 = j2 = (ij)2 = −1〉.
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Exercises

1. Create the operation table for the group with presentation

〈a,b : a2 = b2 = (ab)2 = e〉.

2. Let a =

(
−1 0
0 1

)
and b =

(
1 0
0 −1

)
. Demonstrate that the

group generated by a and b in GL2(R) is an example of a group
of order 4 with presentation

〈a,b : a2 = b2 = (ab)2 = I〉.
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Cyclic Groups

Properties of Cyclic Groups



Cyclic Groups are Commutative

Theorem
Every cyclic group is Abelian.

Proof.
Suppose that G is generated by a. Let x, y ∈ 〈a〉. Then x = am and
y = an for some m,n ∈ Z. Observe that

xy = aman = am+n = an+m = anam = yx.

Therefore, G is Abelian.
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Order of a Group Element

Definition
The order |a| of an element a from a group G is the smallest pos-
itive integer n such that an = e. If no such positive integer exist,
then a is said to be of infinite order.
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Examples

1. Consider the group Z4. The order of 3 is _________ while the
order of 2 is _________.

2. The element 5 ∈ U(7) has order _________.
3. The element 7 ∈ Z has _________.
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Examples

1. Consider the group Z4. The order of 3 is 4 while the order of
2 is 2.

2. The element 5 ∈ U(7) has order 6.
3. The element 7 ∈ Z has an infinite order.
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Order of a Cyclic Subgroup

Lemma
The order of an element a from a group G is the order of the cyclic
subgroup generated by a. More specifically,
1. if |〈a〉| = n < ∞ then an = e and e,a, . . . , an−1 are the distinct
elements of 〈a〉, and

2. if |〈a〉| = ∞ then an 6= e and ax 6= ay for all positive integers
n, x, and y such that x 6= y.

Proof.
The proof is left as an exercise to the reader.
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Consequences of the Lemma

Theorem
Let G be a group. Suppose that a ∈ Gand k ∈ Z−{0}. The following
statements hold:
1. If |a| = ∞ then |ak| = ∞.
2. If |a| = n < ∞ then |ak| = n/gcd(n,k).

Corollary
Let G be a group of order n. Suppose that a ∈ G and k ∈ Z − {0}.
Then G = 〈ak〉 if and only if gcd(k,n) = 1.
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Alternative Lemma for the Theorem

Lemma
Let G be a cyclic group of order n. Suppose that a is a generator
for G. Then ak = e if and only if n divides k.

Proof.
Suppose that ak = e. There exists integers q, r where 0 < r < n
and

k = nq+ r.

Hence, ak = anq+r = anqar. Since n is the order of a, we must
have r = 0. Thus, n divides k. On the other hand, if n divides k
then k = nq for some integer q. Therefore,

ak = anq = (an)q = eq = e.
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Proof

Theorem
Let G be a group. Suppose that a ∈ Gand k ∈ Z−{0}. The following
statements hold:
1. If |a| = ∞ then |ak| = ∞.
2. If |a| = n < ∞ then |ak| = n/gcd(n,k).

Proof.
The proof for the infinite case is trivial. Suppose that |a| = n < ∞.
Note that the order of ak is the smallest integer m such that(

ak
)m

= e or akm = e.

Using the previous lemma, nmust divide km. If d = gcd(n, k) then
n/d divides m (k/d). Thus, n/d divides m. Therefore, m = n/d.
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Corollaries

Corollary
Let G be a group of order n. Suppose that a ∈ G and k ∈ Z − {0}.
Then G = 〈ak〉 if and only if gcd(k,n) = 1.

Corollary
The order of an element in a finite cyclic group G divides the order
of G.
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Fundamental Theorem of Cyclic Groups

Theorem
Let G = 〈a〉 be a cyclic group. Suppose that |G| = n < ∞. Every
subgroup of a cyclic group is cyclic. Furthermore, the order of any
subgroup of G divides n. In addition, for each positive integer k
dividing n, there exists a unique subgroup of G of order k. This
subgroup is the cyclic group 〈ad〉 where d = n/k.
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Proof

Proof.
Let G be a cyclic group generated by a, and H be a subgroup of
G. If H is a trivial subgroup then the conclusion follows. Suppose
that H is non-trivial. This implies that there exists b ∈ H where
b 6= e. Note that b is also in G. Hence, b = ar for some nonzero
r ∈ Z. Since H is a subgroup, a−r is also in H. This shows that
H contains positive powers of a since exactly one of r or −r is
positive. From the collection of positive powers of a, let m be
the smallest element. Such element exists using the Well-Ordered
Principle.
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Proof (cont.)

Proof.
We claim that am is a generator for H. Consider h ∈ H ⊂ G. We can
also write h as ak for some k ∈ Z. By the Division Algorithm, there
exists integers q and r such that k = mq + r where 0 ≤ r < m.
Observe that

ak = amq+r = amqar = (am)q ar.

Hence, ar = ak (am)−q and ar ∈ H. Note that m is the smallest
positive element such that am ∈ H. Thus, r = 0 and

h = (am)q .

Therefore, H is cyclic with generator am.
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Proof (cont.)

Proof.
Let H be a subgroup of G. Then H is cyclic and H = 〈am〉 where m
divides n. Also H satisfies

|H| = |〈am〉| = n
gcd(n,m)

=
n
m .

Hence, the order of any subgroup of G divides n. Now, let k be a
divisor of n. Note that∣∣∣〈an/k〉∣∣∣ = n

gcd
(
n, nk

) =
n
n/k

= k.

This shows that G has a subgroup of order k.
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Proof (cont.)

Proof.
Suppose that K is another subgroup of order k. Then K must also
be cyclic and has generator as where s divides n. Also,

k = |K| = |as| = n
gcd(n, s) =

n
s .

Therefore, s = n
k .
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Corollaries

Corollary
Let G be a finite cyclic group and H ≤ G. The order |H| of H must
divide that |G| of G. In other words, |G| is a multiple of |H|.

Corollary
For each integer k dividing n, the set

〈n
k
〉
is the unique subgroup

of Zn with order k. Moreover, these are only the subgroups of Zn.
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Other Corollaries

Corollary
Let d be a divisor of n. The number of elements of order d in a
cyclic group of order n is ϕ(d), the number of positive integers less
than d relatively prime to d.

Corollary
In a finite group, the number of elements of order d is a multiple
of ϕ(d).
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Exercises

1. Find all generators and draw the lattice diagram of subgroups
for Z16, Z28, U(18), and U(24).

2. Suppose that a and b are elements of a finite group such that
ab = ba. Show that the order |ab| of ab divides the product
|a||b| of the orders of a and b. In addition, show that |ab| =
|a||b| if and only if gcd(|a|, |b|) = 1.

3. Prove that a group of order 3 is always cyclic.
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Examples of Non-Abelian Groups

Symmetric Group



Permutation

Definition
A permutation of a set A is a function ϕ : A → A from a set into
itself that is both one-to-one and onto.

Definition (Restated)
A permutation of a set A is a bijective function from A onto itself.
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Permutation Group

Theorem
The collection of all permutations of a set A into itself is a group
under function composition.

Proof.
The proof follows from the definition and properties of a bijective
function.
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Symmetric Group on n Letters

The collection of all permutations on a set A under function com-
position forms a group called the symmetric group on A. By letting
A be the set Qn := {1, . . . ,n}, we call the symmetric group Sn on
Qn as the symmetric group on n letters.
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Example

What are the elements of the symmetric group S3 on 3 letters?

Consider a function from the set {1, 2, 3} onto {1, 2, 3}. The only
possible bijective functions are those functions whose mappings
are given by:
1. 1 7→ 1, 2 7→ 2, and 3 7→ 3,
2. 1 7→ 1, 2 7→ 3, and 3 7→ 2,
3. 1 7→ 3, 2 7→ 2, and 3 7→ 1,
4. 1 7→ 2, 2 7→ 1, and 3 7→ 3,
5. 1 7→ 2, 2 7→ 3, and 3 7→ 1, and
6. 1 7→ 3, 2 7→ 1, and 3 7→ 2.
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Two-Line Notation

A permutation σ on Qn can be expressed in the two-line notation
shown below (

1 2 · · · n
σ(1) σ(2) · · · σ(n)

)
.

With this notation, the inverse of a permutation is given by(
σ(1) σ(2) · · · σ(n)
1 2 · · · n

)
.
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Example (Revisited)

Using the two-line notation, the elements of S3 are(
1 2 3
1 2 3

)
,

(
1 2 3
1 3 2

)
,

(
1 2 3
3 2 1

)
,(

1 2 3
2 1 3

)
,

(
1 2 3
2 3 1

)
, and

(
1 2 3
3 1 2

)
.

Now, we use the notation to easily compute for the composition
of permutations. Let

f =
(
1 2 3
1 3 2

)
and g =

(
1 2 3
3 2 1

)
.

We compute for f ◦ g. Note that finding composition of two per-
mutations shall be read from right to left.
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Cycle Notation

Given the permutation σ =

(
1 2 3 4 5 6
2 1 4 6 5 3

)
on Q6, it can be

expressed simply as
(1 2)(3 4 6)(5)

where the objects (a1 a2 . . . an−1 an), referred to as cycles of
length n or n-cycles, satisfies σ(a1) = a2, . . . , σ (an−1) = an, and
σ(an) = a1. The product of cycles is called the cycle decomposi-
tion of σ.
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Cycle Decomposition Algorithm

1. Select the smallest element a which has not appeared in a
previous cycle.

2. Find the image b of the element to obtain an initial cycle (a b.
Repeat this step until we reach an element kwhich is mapped
to a.

3. We close the cycle with a right parenthesis. For instance, we
have the cycle (a b . . . k).

4. Repeat the first step until all elements of Sn are considered.
5. Remove all cycles of length one (1).

126 264



Examples

1. Consider the permutations in S6 given by

σ =

(
1 2 3 4 5 6
2 5 6 1 4 3

)
and δ =

(
1 2 3 4 5 6
1 4 2 6 5 3

)
.

What are σ ◦ δ and δ ◦ σ?
2. Evaluate all powers of the permutation σ ∈ S5 given by(

1 2 3 4 5
5 2 1 4 3

)
.
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Remarks

For all integers n ≥ 3, the symmetric group on n letters is
non-Abelian.
For any cycle (a1 a2 . . . an) of length n,

(a1 a2 . . . an) = (a2 . . . an a1) = · · · = (. . . an a1 a2).

128 264



Disjoint Cycles

Cycles that have no entries in common are said to be disjoint.

For instance, the cycles (1 4 7) and (6 5) are disjoint while (2 5 3)
and (3 7) are not disjoint.

The inverse of a permutation (a1 . . . an)(b1 . . . bk) · · · , where the
cycles are pairwise disjoint, is then given by

· · · (bk . . . b1)(an . . . a1).
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Examples

1. Write the permutation
(
1 2 3 4 5 6
5 3 1 6 2 4

)
and its inverse

using disjoint cycles.
2. Consider the permutations in S7 given by σ = (1 3 4)(5 6 2)
and δ = (2 4)(3 6). Compute for σδ and δσ.
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Cycle Decomposition of a Permutation

Theorem
Every permutation of a finite set can be written as a cycle or as a
product of disjoint cycles.

Proof.
The proof is left as an exercise to the reader.
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Disjoint Cycles Commute

Theorem
Given any pair of disjoint cycles σ and δ, we must have σδ = δσ.

Proof.
Let x be an entry in σ. Then σ(x) is an entry in σ and δ(y) = y for all
entries y in σ. Hence, σ(δ(x)) = σ(x) = δ(σ(x)). Similar arguments
follow when x is an entry in δ.
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Order of a Cycle

Lemma
The order of a k-cycle is k.

Proof.
Let σ = (a1 a2 . . . ak) be a k-cycle. Note that σ(ai) = ai+1. Hence,
σn(ai) = ai+n where i+ n is taken modulo k. This shows that
σk(ai) = ai and σj(a1) 6= a1 for 1 ≤ j ≤ k− 1. Therefore, σj 6= (1)
whenever 1 ≤ j ≤ k− 1 and |σ| = k.
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Order of a Permutation

Theorem
The order a permutations is the least common multiple of the
lengths of the cycles in its cycle decomposition.

Proof.
Let α = α1 . . . αn be a cycle decomposition where the length of αi
is li. Suppose that k is the order of α and l be the least common
multiple of l1, . . . , and ln. Then αk = αk1 · · ·αkn = (1) because dis-
joint cycles commute. It follows that αki = (1) for all i since αki
are disjoint. Thus, each li divides k which implies that l divides
k. Moreover, αl = (1) since α

li
i = (1). This means that k divides l.

Therefore, k = l.
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Examples

Find the order of the following permutations.
1. (1 3 4)(2 5)
2. (1 7 3)(4 8)(2 5 6 9)
3. (1 5 4 2)(2 5 7 9)
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Transposition

Definition
A cycle of length 2 is called a transposition.

Theorem
Every permutation of a finite set containing at least two elements
is a product of 2-cycles.

Proof.
The proof follows from the fact that any cycle (a1 a2 . . . ak) can
be written as (a1 ak) . . . (a1 a3)(a1 a2).
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Even and Odd Permutations

Lemma
If σ1 . . . σk = (1) then k must be even.

Proof.
The proof is left as an exercise to the reader.
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Unique Parity

Theorem
No permutation in Sn can be expressed both as a product of an
even number of transpositions and as a product of an odd number
of transpositions.

Proof.
Let α = α1 . . . αk and β = β1 . . . βj. If α = β then

α1 . . . αkβ
−1
j . . . β−1

1 = α1 . . . αkβj . . . β1 = (1).

Thus, s+ r must be even. Therefore, s and r must be both odd or
both even.
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Parity of Permutations

Definition
A permutation of a finite set is even or odd if it can be written as a
product of an even or odd number of transpositions, respectively.
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Exercises

Determine whether the following permutations are even or odd.
1. (1 5 4 3)
2. (1 3 8)(7 9 2)
3. (2 5)(4 3 1)(2 4)
4. (1 3)(2 3)(3 5 9)(1 4 6)
5. (1 4 3)(2 5 9)(2 5)(1 3)(7 8)
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Inversion

Definition
Let n be an integer with n ≥ 2. Define Tn as the set of ordered
pairs given by

Tn = {(i, j) ∈ Q2n : i < j}.

The number of inversions of σ ∈ Sn is the number

inv(σ) = |{(i, j) ∈ Tn : σ(i) > σ(j)}| .

Observe that

|Tn| =
n∑
i=1

(n− i) = n(n− 1)−
n∑
i=1

i = n(n− 1)
2 .
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Example

Consider the permutation σ = (1 3 2)(4 5) in S5. To find inv(σ), we
must find pairs (i, j) ∈ Q25 such that σ(i) > σ(j). These are the pairs

(1, 2), (1, 3), and (4, 5).

Hence, inv(σ) = 3.
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Parity

Theorem
A permutation σ ∈ Sn is even (odd) if and only if inv(σ) is an even
(odd) integer.

Proof.
The proof is left as an exercise.
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Alternating Group on n Letters

Theorem
Let n ≥ 2 be an integer. The collection of all even permutations of
{1, 2, . . . ,n} forms a subgroup of order n!/2 of the symmetric group
Sn. This subgroup is called the alternating group on n letters.

Proof.
Consider the function f : An → Sn − An defined by f (σ) = ασ
where α is a fixed element of Sn − An. We claim that f is bijective.
Suppose that f (σ) = f (β). Then ασ = αβ. Hence, σ = β and f
is one-to-one. Now, we consider δ ∈ Sn − An. Then α−1δ is an
even permutation and f (α−1δ) = δ. Thus, f is onto. Therefore, f is
bijective and |An| = |Sn − An| = n!

2 .
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Exercises

1. What are the possible orders for the elements of S5?
2. Let H = {β ∈ S5 : β(1) = 1 and β(3) = 3}. Prove that H is a
subgroup of S5. Find the order of H.

3. Prove that for any permutation σ, στσ−1 is a transposition if
and only if τ is a transposition.
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Additional Notes

Symmetric groups on n letters are also called symmetric groups
of degree n.
Any subgroup of a symmetric group of a set is called a per-
mutation group.
The product of all cycles relating to a permutation σ is called
the cycle decomposition of σ.
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Examples of Non-Abelian Groups

Dihedral Group



Elements of the Dihedral Set

The elements of D2n are composed of
n rotations, and
n reflection symmetries.

These rotation and reflection symmetries can be written in terms
of permutations.
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Dihedral Symmetries of the Square

For instance, the elements of D8 are subsets of S4 given by the
rotations

1. (1)
2. (1 2 3 4)

3. (1 3)(2 4) and
4. (1 4 3 2),

and the reflection symmetries

1. (1 2)(3 4)
2. (2 4)

3. (1 3) and
4. (1 4)(2 3).

148 264



Dihedral Group

Theorem
For any n ≥ 3, (D2n, ◦) is a group under function composition.

Theorem
The proof follows from the definition of a symmetry.
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Dihedral Group
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Theorem
The proof follows from the definition of a symmetry.
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Dihedral Group

Definition
Let n ≥ 3. The dihedral group D2n of order 2n is the set D2n under
the function composition.

Definition (Restated)
The dihedral group D2n of order 2n, where n ≥ 3, is the group
consisting of all rigid motions of a regular polygon with n sides
under the function composition.
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Dihedral Group (cont.)

Lemma
The dihedral group D2n can be expressed as

{1, ρ, ρ2, . . . , ρn−1, µρ, µρ2, . . . , µρn−1}

where ρ is the clockwise rotation about the origin through 2π/n ra-
dians and µ is the reflection about the line of symmetry passing
through vertex 1 and the origin.

Proof.
The proof is left as an exercise to the reader.
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Dihedral Group (cont.)

Lemma
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Properties of Dihedral Groups

Theorem
Let D2n be the dihedral group of order 2n. The following statements
hold:
1. The order of ρ and µ is n and 2 respectively.
2. For any integers i and j, ρiρj = ρi+j.
3. For any 1 ≤ i ≤ n− 1, µ 6= ρi.
4. For 0 ≤ i ≤ n, ρiµ = µρ−i holds.

Proof.
The proof is left as an exercise to the reader.
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Remarks

Observe that the group presentation of the dihedral group D2n of
order 2n is given by

〈ρ, µ : ρn = µ2 = e, ρµ = µρ−1〉.
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Exercises

1. Find the center of the dihedral group D8 of order 8.
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Additional Notes

The dihedral group of order 2n is also called the nth dihedral
group.
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Cosets and Lagrange’s Theorem

Equivalence Relation on Groups



Group Partition

Theorem
Let H be a subgroup of a group G. The relation ∼L defined on G
where

a ∼L b if and only if ab−1 ∈ H

is an equivalence relation on G.

Proof.
The proof is left as an exercise to the reader.
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Remarks

Observe that the equivalence class [a] containing a can be
written as

[a] = {b ∈ H : b ∼L a} = {b ∈ H : ba−1 ∈ H}
= {b ∈ H : ba−1 = h for some h ∈ H}
= {b ∈ H : b = ha for some h ∈ H}
= {ha : h ∈ H}.
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Cosets and Lagrange’s Theorem

Definition



Coset

Definition
Let H be a subgroup of a group G. The subsets aH = {ah : h ∈ H}
and Ha = {ha : h ∈ H} of G are respectively called the left coset
and right coset of H containing a ∈ G. Any element of a coset is
called a representative of a coset.
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Examples

1. Consider the subgroup {0, 3} of Z6. Find the following cosets
0H, 1H, 4H, 5H,H1, and H2.

2. Consider the subgroup H = {(1), (1 2 3), (1 3 2)} of S3. Find all
the left and right cosets of K.

Exercise
Consider the subgroup K = {(1), (1 2)} of S3. Find all the left and
right cosets of K.
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Examples (cont.)

1. Using the definition of a coset, we have

0H = {0, 3}, 1H = {1, 4}, 4H = {4, 1} = 1H, 5H = {5, 2},

H1 = {1, 4} = 1H, and H2 = {2, 5} = 5H.

2. Let g = (1), h = (1 2), and k = (1 3). The left cosets are

gH = {(1), (1 2 3), (1 3 2)},hH = {(1 2), (1 3), (1 2 3)}. and

kH = {(1 3), (1 2), (1 3 2)}.

Meanwhile, the right cosets are

Hg = {(1), (1 2 3), (1 3 2)},Hh = {(1 2), (1 3), (1 3 2)}, and

Hk = {(1 3), (1 2), (1 2 3)}.
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Equivalent Conditions

Lemma
Let H be a subgroup of a group G. Suppose that g1,g2 ∈ G. The
following conditions are equivalent:
1. g1H = g2H
2. Hg−11 = Hg−12
3. g1H ⊂ g2H
4. g2 ∈ g1H
5. g−11 g2 ∈ H

Proof.
The proof is left as an exercise.
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Cardinality of Left and Right Cosets

Theorem
Let H be a subgroup of a group G. The number of left cosets of H
in G is the same as the number of right cosets of H in G.
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Proof

Proof.
Let LH and RH denote the set of left and right cosets of H in G,
respectively. Consider the function ϕ : LH → RH defined by

ϕ(gH) = Hg−1.

The previous lemma guarantees well-definedness of the function.
Suppose that ϕ(g1H) = ϕ(g2H). Then Hg−11 = Hg−12 , which implies

g1H = g2H

using the previous lemma. Hence, ϕ is injective. Now, given Hg ∈
RH, then the coset g−1H in LH satisfies

ϕ(g−1H) = Hg.

Thus, ϕ is surjective. Consequently, ϕ is bijective.
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Index of a Subgroup

Definition
Let H be a subgroup of a (possibly infinite) group G. The number
of left cosets of H in G is the index of H in G, denoted by (G : H).
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Cardinality of G and gH

Lemma
Let H be a subgroup of a group G. The cardinality of H is equal to
the cardinality of any left coset gH of H in G.

Proof.
Consider the function ϕ : H → gH defined by ϕ(h) = gh. We leave
the reader to show that ϕ is bijective. Therefore, H and gH have
the same cardinality.

165 264



Cardinality of G and gH

Lemma
Let H be a subgroup of a group G. The cardinality of H is equal to
the cardinality of any left coset gH of H in G.

Proof.
Consider the function ϕ : H → gH defined by ϕ(h) = gh. We leave
the reader to show that ϕ is bijective. Therefore, H and gH have
the same cardinality.

165 264



Theorem of Lagrange

Theorem
Let H be a subgroup of a finite group G. Then the order of H
divides the order of G. In particular,

|G| = (G : H)|H|.

Proof.
The group G is partitioned into (G : H) distinct left cosets. Each
left coset has cardinality of |H|. Therefore, |G| = (G : H)|H|.
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Groups of Prime Order

Corollary
Every group G of prime order is cyclic. In addition, any element of
G is a generator for G.
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Corollaries to Lagrange’s Theorem

Corollary
The order of an element in a finite group G divides the order of G.

Corollary
If G is a group of prime order p, then G is cyclic.
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Corollary

Corollary
Let H and K be subgroups of a group G such that K ≤ H ≤ G.
Suppose that (H : K) and (G : H) are both finite. Thus, (G : K) is
finite and (G : K) = (G : H)(H : K).
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Exercises

1. Suppose that (G : H) = 2. If a and b are not in H, then ab ∈ H.
2. If (G : H) = 2, then gH = Hg.
3. Let H and K be subgroups of a group G. Prove that gH ∩ gK is
a coset of H ∩ K in G.
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Group Isomorphism

Cayley’s Theorem



Isomorphism

Definition
Let (G, ∗) and (H, ⋆) be groups, and f : G → H. We say that f is a
group isomorphism if f is a bijective homomorphism, that is,
1. The function f is one-to-one and maps onto H.
2. For all a,b ∈ G, f (a ∗ b) = f (a) ⋆ f (b).

We say that (G, ∗) is isomorphic to (H, ⋆) if there exists an isomor-
phism between (G, ∗) and (H, ⋆). We denote these statement by
G ∼= H.
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Examples

1. The additive group (R,+) of real numbers is isomorphic to
multiplicative group (R, ·) of real numbers.

2. The groups U(8) and U(12) are isomorphic.
3. The groups Z8 and Z12 are not isomorphic.

Exercise
The groups Z6 and S3 are not isomorphic.
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Examples

1. Consider the function ϕ : (R,+) → (R, ·) given by

ϕ(x + y) = ex+y.

2. Consider the function ϕ : U(8) → U(12) given by

1 7→ 1, 3 7→ 5, 5 7→ 7, and 7 7→ 11.

3. Check the orders of each group.
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"Up to an Isomorphism"

Consider a group (G, ∗) with three elements say {e,a,b}. Since
a group needs an identity element, we assume that the identity
element is e. We can construct a Cayley table as follows:

∗ e a b
e e a b
a a b e
b b e a

.

The Cayley table of another group with three elements must be
similar to the previous table. Hence, up to an isomorphism, there
is a unique group of order 3.
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Properties of an Isomorphism

Lemma
Let f : G → H be a group isomorphism between (G, ∗) and (H, ⋆).
Then f−1 : H→ G is also a group isomorphism and |G| = |H|.

Proof.
The proof is left as an exercise to the reader.

175 264



Properties of an Isomorphism

Lemma
Let f : G → H be a group isomorphism between (G, ∗) and (H, ⋆).
Then f−1 : H→ G is also a group isomorphism and |G| = |H|.

Proof.
The proof is left as an exercise to the reader.
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Theorem
The isomorphism of groups determines an equivalence relation
on the class of all groups.

Proof.
The proof is left as an exercise to the reader.
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Theorem
The isomorphism of groups determines an equivalence relation
on the class of all groups.

Proof.
The proof is left as an exercise to the reader.
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Remarks

A group isomorphism without the one-to-one and onto properties
is called a homomorphism.

Lemma
Let ϕ : G→ H be a group homomorphism between the group G
with identity eG and the group H with the identity element eH.
Then

ϕ(eG) = eH.
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Properties of an Isomorphism (cont.)

Theorem
Let f : G → H be a group isomorphism. Then the following state-
ments hold:
1. G has generator a if and only if H has generator ϕ(a).
2. The elements a in G and ϕ(a) in H have the same order.
3. G is Abelian if and only if H is Abelian.
4. G has a subgroup of order n if and only if H has a subgroup
of order n.
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Proof

Proof.
If G is generated by a, then any element g ∈ G can be written as

g = ak

where k is an integer. Note that all elements of H are images ϕ(g)
of an element of some g ∈ G. Hence, ϕ(g) = ϕ(ak) = [ϕ(a)]k. Thus,
every element of H is a power of ϕ(a). Recall that ϕ−1 is also an
isomorphism. Since H is generated by ϕ(a), then ϕ−1(ϕ(a)) = a
generates G.
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Proof (cont.)

Proof.
By the previous result, we have [ϕ(g)]k = e where k is the order
of g. If the order of ϕ(g) is n < k, then e = [ϕ(g)]n = ϕ(gn). This
contradicts the previous lemma stating that the identity element
are mapped in an isomorphism.

Every cyclic group is Abelian, by the first result, G is Abelian
if and only if H is Abelian. The second result proves the last
result.
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Proving Two Groups are Not Isomorphic

Let G and H be groups. Then G is not isomorphic to H whenever
1. |G| 6= |H|,
2. G (H) is Abelian and H (G) is non-Abelian,
3. the largest order of any element in G is not equal to the
largest order of any element in H, or

4. the number of elements of some specific order in G is not
the same as the number of elements of the same order in H.
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Exercises

1. The groups Z12 and D12 are not isomoprhic.
2. The group Q of rational numbers under addition is not
isomorphic to the group Q∗ of nonzero rational numbers
under multiplication.
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Characterizing Cyclic Groups

Theorem
Let G be a cyclic group. If the order of G is infinite, then G is isomor-
phic to (Z,+). However, If G has finite order n then G is isomorphic
to (Zn,+n).

Proof.
For any H ∈ {Z,Zn}, consider the function ϕ from H into G such
that ϕ(n) = gn where g is a generator of G. The rest of the proof is
left as an exercise to the reader.
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Corollary
If G is a group of prime order p, then G is isomorphic to Zp.
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Cayley’s Theorem

Theorem
Every group is isomorphic to a group of permutations.

Proof.
The proof is left as an exercise to the reader.
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Theorem
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Proof.
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Left and Right Regular Representation

Definition
Let G be a group. The function ϕ : G→ SG, where SG := {λg : g ∈ G}
and λg(x) = gx for all x ∈ G is called the left regular representa-
tion of G. Moreover, themap τ : G→ SG given by τ(x) = σx−1 where
σg = xg for all x ∈ G is called the right regular representation of
G.
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Group Isomorphism

Automorphism



Automorphism

Definition
An isomorphism from a group G onto itself is called an automor-
phism of G.
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Exercise

1. The function ϕ : R2 → R2 defined by ϕ(a,b) = (b,a) is an
automorphism of R2 under componentwise addition.
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Inner Automorphism

Theorem
Let G be a group, and a be a fixed element of G. The function ϕa
defined by ϕa(x) = axa−1 for all x in G is an automorphism, called
the inner automorphism of G induced by a.

Proof.
The proof is left as an exercise to the reader.
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Examples

1. Suppose that ϕ : Z20 → Z20 is an automorphism and ϕ(5) = 5.
What are the possibilities of ϕ(x)?

2. Compute Aut(Z10).

190 264



Examples (cont.)
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Group Isomorphisms

Theorem
The set Aut(G) of automorphisms of a group G and the set Inn(G)
of inner automorphisms of G are groups under the operation of
function composition.

Proof.
The proof is left as an exercise to the reader.
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Group Isomorphisms

Theorem
The set Aut(G) of automorphisms of a group G and the set Inn(G)
of inner automorphisms of G are groups under the operation of
function composition.

Proof.
The proof is left as an exercise to the reader.

192 264



Isomorphism

Theorem
For every positive integer n, Aut(Zn) is isomorphic to U(n).

Proof.
The proof is left as an exercise to the reader.
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Isomorphism

Theorem
For every positive integer n, Aut(Zn) is isomorphic to U(n).

Proof.
The proof is left as an exercise to the reader.
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Exercises

1. Suppose that a group G is isomoprhic to a group H. Show that
Aut(G) is isomorphic to Aut(H).
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Group Isomorphism

Direct Product



Groups from Cartesian Products

Theorem
Let G and H be groups. The set G×H is a group under the operation

(g1,h1)(g2,h2) = (g1g2,h1h2)

where g1,g2 ∈ G and h1,h2 ∈ H. The group is called the external
direct product of G and H.

Corollary
Let G1,G2, . . . ,Gn be groups. The set

∏n
i=1 Gi is a group under the

operation

(g1,g2, . . . ,gn)(h1,h2, . . . ,hn) = (g1h1,g2h2, . . . ,gnhn)

where gi,hi ∈ Gi for each integer 1 ≤ i ≤ n.
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Examples

1. The external direct product of a finite number of the group
of real numbers under addition.

2. The external direct product of a finite number of Z2.
3. The external direct product of U(8) and U(10).
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Order of External Direct Products

Theorem
Let (g,h) ∈ G×H. If g and h have finite orders r and s respectively,
then the order of (g,h) is the least common multiple of r and s.
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Corollary

Corollary
Let (g1, . . . ,gn) ∈

∏n
i=1 Gi. If gi has finite order ri in Gi, then the

order of (g1, . . . ,gn) is the least common multiple of r1, . . . , rn.
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Characterizing External Direct Products

Theorem
The group Zm×Zn is isomorphic to Zmn if and only if gcd(m,n) = 1.

Corollary
Let n1, . . . ,nk be positive integers. Then

k∏
i=1

Zni ∼= Zn1···nk

if and only if gcd(ni,nj) = 1 for i 6= j.
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Characterizing External Direct Products
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Characterizing External Direct Products

Corollary
Suppose that p1, . . . ,pk are distinct primes. If m = pe11 · · ·pekk then

Zm ∼= Zpe11 × · · · × Zpekk
.
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Exercises

1. Let G,H,G′, and H′ be groups such that G ∼= G′ and H ∼= H′.
Show that G× H ∼= G′ × H′.
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Normal and Quotient Groups



Normal and Quotient Groups

Normal Subgroup



Definition

Definition
Let H be a subgroup of a group G. We say that H is normal in G or
H is a normal subgroup of G if gH = Hg for all g ∈ G. We write
H⊴ G to mean that H is normal in G.
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Examples
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Equivalent Conditions for Normal Subgroups

Theorem
For a subgroup H of a group G, the following statements are
equivalent:
1. For all g ∈ G, gH = Hg.
2. For all g ∈ G and h ∈ H, ghg−1 ∈ H (or gHg−1 ⊂ H).
3. For all g ∈ G, we have gHg−1 = H.

Definition (Normal Subgroup (Restated))
Let G be a group. The element ghg−1 is called the conjugate of
h ∈ H by g ∈ G. The set gHg−1 := {ghg−1 : h ∈ H} is called
the conjugate of H by g. The element g is said to normalize H if
gHg−1 = H. A subgroup H of G is normal in G if every element of G
normalizes N.
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Normal and Quotient Groups

Quotient Group



Operations for Normal Subgroups

Let H be a subgroup of a group G. The left coset multiplication is
well defined by the equation

(aH)(bH) = (ab)H

if and only if H is a normal subgroup of G.
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Factor Group

Theorem
Let H be a normal subgroup of a group G. The cosets of H form
a group G/H of order (G : H) under left coset multiplication. This
group is called the quotient group (or factor group) of G by H.
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Cyclic Factor Groups

Theorem
If G is a cyclic group and H is a normal subgroup of G, then G/H is
cyclic.
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Normal and Quotient Groups

Other Groups Related to Normal Subgroups



Definition

Definition
A group is simple if it has no proper nontrivial normal subgroups.

Theorem
The alternating group An is simple for n ≥ 5.
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Definition

Definition
A group is simple if it has no proper nontrivial normal subgroups.

Theorem
The alternating group An is simple for n ≥ 5.
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Maximal Normal Subgroup

Definition
A maximal normal subgroup of a group G is a proper normal
subgroup M of G such that there exists no other proper normal
subgroup N of G containing M.

Theorem
Let M be a subgroup of G. Then M is a maximal normal subgroup
of G if and only if G/M is simple.
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Exercises

1. If a group G has exactly one subgroup H or order k then H is
normal in G.
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Normal and Quotient Groups

Internal Direct Product



Internal Direct Product

Let H and K be subgroups of a group G such that
1. G = HK = {hk : h ∈ H, k ∈ K},
2. H ∩ K = {e}, and
3. hk = kh for all h ∈ H and k ∈ K.

The group G is called the internal direct product of H and K.
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Examples
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Generalized Internal Direct Product

Let {Hi : 1 ≤ i ≤ n} be a collection of n subgroups of a group G
such that
1. G = H1 · · ·Hk = {h1 · · ·hn : hi ∈ Hi},

2. Hi ∩
(⋃

j ̸=i Hj
)
= {e}, and

3. hihj = hjhi for all hi ∈ Hi and hj ∈ Hj.
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Characterizing Internal Direct Products

Theorem
Let G be the internal direct product of subgroups H and K. Then G
is isomorphic to H× K.

Theorem
Let G be the internal direct product of subgroups Hi, where 1 ≤ i ≤
n is an integer. Then G is isomorphic to

∏n
i=1 Hi.
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Characterizing Internal Direct Products

Theorem
Let G be the internal direct product of subgroups H and K. Then G
is isomorphic to H× K.

Theorem
Let G be the internal direct product of subgroups Hi, where 1 ≤ i ≤
n is an integer. Then G is isomorphic to

∏n
i=1 Hi.
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Group Homomorphism



Group Homomorphism

Definition and Properties



Homomorphism

Definition
Let (G, ∗) and (H,⊗) be semigroups. A function ϕ : G → H is a
homomorphism provided that

ϕ(a ∗ b) = ϕ(a)⊗ ϕ(b)

holds for all a,b in G. The range of ϕ is sometimes called the ho-
momorphic image of ϕ.
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Remarks

Let ϕ : G → H be a homomorphism from a semigroup G into an-
other semigroup H.

If ϕ is injective as a map of sets, then ϕ is called a monomor-
phism.
If ϕ is surjective, then ϕ is called an epimorphism.
If ϕ is bijective, then ϕ is called an isomorphism.
If H = G, then ϕ is called an endomorphism of G.
If H = G and ϕ is bijective, then ϕ is called an automorphism
of G.
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Properties of a Group Homomorphism

Theorem
Let ϕ be a homomorphism of a group G with identity e into a group
G′ with identity e′.
1. The element ϕ(e) is the identity element in G′. That is, e′ =

ϕ(e).
2. If a ∈ G, then ϕ (a−1) = [ϕ(a)]−1.
3. If H is a subgroup of G, then ϕ(H) is a subgroup of G′.
4. If H′ is a subgroup of G′, then ϕ−1 (H′) is a subgroup of G.
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More Properties of a Homomorphism

Theorem
Let ϕ : G→ G′. If H is normal subgroup of G, then ϕ(N) is a normal
subgroup of G′. Also, if H′ is a normal subgroup of ϕ(G), then
ϕ−1(H′) is a normal subgroup of G.
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Group Homomorphism

Kernel of a Group Homomorphism



Kernel of a Group Homomorphism

Definition
Let ϕ : G → H be a homomorphism of groups. The kernel of f ,
denoted by ker(f ), is defined as

{a ∈ G : ϕ(a) = e′}

where e′ is the identity element for H.

219 264



Properties of the Kernel

Theorem
Let ϕ : G→ G′ be a group homomorphism. Then the left and right
cosets of ker(ϕ) are identical. Furthermore, the elements a and b
in G are in the same coset of ker(ϕ) if and only if ϕ(a) = ϕ(b).
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Properties of Homomorphisms Using the Kernel

Theorem
Let ϕ : G→ H be a homomorphism of groups,
1. The function ϕ is a monomorphism if and only if the kernel of
f is trivial.

2. The function ϕ is an isomorphism if and only if there exists a
homomorphism δ : H→ G such that the compositions ϕδ and
δϕ are equal to the appropriate identity functions.
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Normal Subgroups and their Kernel

Theorem
Let ϕ : G → H be a group homomorphism. Then the kernel of ϕ is
a normal subgroup of G.

Theorem
Let H be a subgroup of a group G. Then H is a normal subgroup
of G if and only if there exists a group homomorphism ϕ : G → H
such that ker(ϕ) = H.
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Normal Subgroups and their Kernel

Theorem
Let ϕ : G → H be a group homomorphism. Then the kernel of ϕ is
a normal subgroup of G.

Theorem
Let H be a subgroup of a group G. Then H is a normal subgroup
of G if and only if there exists a group homomorphism ϕ : G → H
such that ker(ϕ) = H.
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Canonical Homomorphism

Theorem
Let H be a normal subgroup of a group G. Then ϕ : G → G/H given
by ϕ(x) = xH is a homomorphism with kernel H. The function ϕ
is called the natural projection of G onto G/H. It is also called the
canonical homomorphism.
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First Isomorphism Theorem

Theorem
Let ϕ : G → H be a group homomorphism with kernel K. If
γ : G → G/K is the canonical homomorphism, then there exists
a unique isomorphism µ : G/K → ϕ(G) such that ϕ = µ ◦ γ.

224 264



Commutative Diagrams

A commutative diagram is a collection ofmappings where all com-
positions starting from the same set and ending with the same set
lead to the same result.
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Second or Diamond Isomorphism Theorem

Theorem
Let H be a subgroup of G, and N be a normal subgroup of G. Then
HN is a subgroup of G, H ∩ N is a normal subgroup of H, and

H
H ∩ N

∼=
HN
N .
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Third Isomorphism Theorem

Theorem
Let N and H be normal subgroups of G where N ⊂ H. Then

G
H

∼=
G/N
H/N

.
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Fourth or Lattice Isomorphism Theorem

Theorem
Let N be a normal subgroup of a group G. Then there is a bijection
from the set of subgroups H of G containing N onto the set of sub-
groups of G/N such that, for all A,B ≤ G with N ≤ A and N ≤ B,
1. A ≤ B if and only if A/N ≤ B/N,
2. if A ≤ B then (B : A) = (B/N : A/N),
3. (A ∩ B)/N = A/N ∩ B/N, and
4. A⊴ G if and only if A/N⊴ G/N.
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Further Properties Involving Isomorphisms

Theorem
Let G = H × K be the external direct product of groups H and K.
Then H = {(h, e) : h ∈ H} is a normal in G. Moreover, G/H is
isomorphic to K in a natural way. Analogously, G/K is isomorphic
to H in a natural way.
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Structure of Groups



Goal of Group Theory

The ultimate goal of group theory is to classify all groups up to
isomorphism; that is, given a particular group, we should be able
to match it up with a known group via an isomorphism.

230 264



Frame Title

Definition
Let {gi} be a collection of elements of a group G. The smallest
subgroup containing each gi is the subgroupofG generatedby the
gi’s. In this case, the gi’s are the generators for G. Furthermore, if
{gi} is a finite set that generates G, then G is finitely generated.

231 264



Frame Title

Theorem
Let H be a subgroup of a group G that is generated by {gi}. Then
h ∈ H when it is a product of the form

h = gα1i1 · · ·gαnin

where the gik ’s are not necessarily distinct.
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p-Group

Definition
Let p be a prime number. A group G is a p-group if every element
in G has as its order a power of p.
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Fundamental Theorem of Finite Abelian Groups

Theorem
Every finite Abelian group G is isomorphic to a direct product of
cyclic groups of the form

Zα1
p1 × Zα2

p2 × · · · × Zαn
pn

where each pi are primes (not necessarily distinct).
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Frame Title

Lemma
Let G be a finite Abelian group of order n. If p is a prime that divides
n, then G contains an element of order p.

Lemma
A finite Abelian group is a p-group if and only if its order is a power
of p.

Lemma
Let G be a finite Abelian group of order n = pα11 · · ·pαkk , where each
pi is prime and each αi is a positive integer. Then G is the internal
direct product of subgroups G1,G2, . . . ,Gk, where Gi is the subgroup
of G consisting of all elements of order pri for some integer r.
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Frame Title

Lemma
Let G be a finite Abelian p-group and suppose that g ∈ G has max-
imal order. Then G is isomorphic to 〈g〉 × H for some subgroup H
of G.

Theorem
Every finitely generated Abelian group G is isomorphic to a direct
product of cyclic groups of the form

Zα1
p1 × Zα2

p2 × · · · × Zαn
pn × Z× · · · × Z

where each pi are primes (not necessarily distinct).
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Frame Title

Definition
A subnormal series of a group G is a finite sequence of subgroups

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e},

where Hi is a normal subgroup of Hi+1. If each subgroup Hi is nor-
mal in G, then the series is called a normal series. The length of a
subnormal or normal series is the number of proper inclusions.

Definition
A subnormal series {Kj} is a refinement of a subnormal series
{Hi} if {Hi} ⊂ {Kj}.
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Frame Title

Definition
A subnormal series of a group G is a finite sequence of subgroups

G = Hn ⊃ Hn−1 ⊃ · · · ⊃ H1 ⊃ H0 = {e},

where Hi is a normal subgroup of Hi+1. If each subgroup Hi is nor-
mal in G, then the series is called a normal series. The length of a
subnormal or normal series is the number of proper inclusions.

Definition
A subnormal series {Kj} is a refinement of a subnormal series
{Hi} if {Hi} ⊂ {Kj}.

237 264



Frame Title

Definition
Two subnormal series {Hi} and {Kj} of a group G are isomorphic if
there is a bijection between the collection of factor groups {Hi+1/Hi}
and {Kj+1/Kj}.

Definition
A subnormal series of a group is a composition series if all the
factor groups are simple. A normal series of a group is a principal
series if all the factor groups are simple.
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Frame Title

Definition
Two subnormal series {Hi} and {Kj} of a group G are isomorphic if
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Jordan-Hölder Theorem

Theorem
Any two composition series of G are isomorphic.

Definition
A group is solvable if it has a subnormal series {Hi} such that all
the factor groups Hi+1/Hi are Abelian.
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Group Action on a Set



Frame Title

Definition
Let X be a set and G be a group. A (left) action of G on X is a map
G× X → X given by (g, x) → gx, where
1. ex = x for all x ∈ X, and
2. (g1g2)x = g1(g2x) for all x ∈ X and g1,g2 ∈ G.

The set X is called a G-set.
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Frame Title

Definition
If G acts on a set X and x, y ∈ X, then x is said to be G-equivalent
to y if there exists g ∈ G such that gx = y. We write x ∼G or x ∼ y
if two elements are G-equivalent.
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Frame Title

Theorem
Let X be a G-set. Then G-equivalence is an equivalence relation on
X.
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Frame Title

Definition
Suppose that G is a group acting on a set X. Let g ∈ G. The fixed
point set of g in X, denoted by Xg, is the set of all x ∈ X such that
gx = x. The stabilizer subgroup or isotropy subgroup of x ∈ X
consists of all group elements g such that gx = x.
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Frame Title

Theorem
Let G be a group acting on a set X and x ∈ X. The stabilizer sub-
group of x is a subgroup of G.

Theorem
Let G be a finite group and X be a finite G-set. If x ∈ X, then |Ox| =
(G : Gx).
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Frame Title

Theorem
Let G be a group acting on a set X and x ∈ X. The stabilizer sub-
group of x is a subgroup of G.

Theorem
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(G : Gx).
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Frame Title

Let X be a finite G-set and XG be the set of fixed points in X; that is

XG = {x ∈ X : gx = x for all g ∈ G}.

Since the orbits of the action partition X,

|X| = |XG|+
n∑
i=k

|Oxi |

where xk, . . . , xn are representatives from the distinct nontrivial
orbits of X.

245 264



Frame Title

Consider the case in which G acts on itself by conjugation, (g, x) →
gxg−1. The center of G is the set

Z(G) = {x : xg = gx for all g ∈ G}

of points that are fixed by conjugation. The nontrivial orbits of
the action are called conjugacy classes of G. If x1, . . . , xk are rep-
resentatives from each of the nontrivial conjugacy classes of G
and |Oxi | = ni, then

|G| = |Z(G)|+ n1 + · · ·+ nk.
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Frame Title

The stabilizer subgroups of each xi,

C(xi) = {g ∈ G : gxi = xig}

are called centralizer subgroups of the xi’s. Thus, we obtain the
class equation given by

|G| = |Z(G)|+ (G : C(x1)) + · · ·+ (G : C(xk)).
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Frame Title

Theorem
Let G be a group of order pn where p is prime. Then G has a non-
trivial center.

Corollary
Let G be a group of order p2 where p is prime. Then G is Abelian.
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Frame Title

Theorem
Let G be a group of order pn where p is prime. Then G has a non-
trivial center.

Corollary
Let G be a group of order p2 where p is prime. Then G is Abelian.
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Frame Title

Lemma
Let X be a G-set and suppose that x ∼ y. Then Gx is isomorphic to
Gy. In particular, |Gx| = |Gy|.
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Frame Title

Theorem
Let G be a finite group acting on a set X. Suppose that k is the
number of orbits of X. Then

k =
1
|G|

∑
g∈G

|Xg|.
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Frame Title

Theorem
Let G be a permutation group of X and X̃ be the set of functions
from X to Y. Then G induces a group G̃ that permutes the elements
of X̃, where σ̃ ∈ G̃ is defined by σ̃ = f ◦ σ for σ ∈ G and f ∈ X̃. Fur-
thermore, if n is the number of cycles in the cycle decomposition
of σ, then |Xσ| = |Y|n.
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Sylow Theorems



Frame Title

Definition
A group G is a p-group if every element in G has its order a power
of a prime number p. A subgroup of a group G is a p-subgroup if
it is a p-group.
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Frame Title

Theorem
Let G be a finite group and p be a prime such that p divides the
order of G. Then G contains a subgroup of order p.

Corollary
Let G be a finite group. Then G is a p-group if and only if |G| = pn.
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Frame Title

Theorem
Let G be a finite group and p be a prime such that p divides the
order of G. Then G contains a subgroup of order p.

Corollary
Let G be a finite group. Then G is a p-group if and only if |G| = pn.
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First Sylow Theorem

Theorem
Let G be a finite group and p be a prime such that pr divides |G|.
Then G contains a subgroup of order pr.

254 264



Sylow p-Subgroup

Definition
A Sylow p-subgroup of a group G is a maximal p-subgroup of G.
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Frame Title

Definition
The set N(H) = {g ∈ G : gHg−1 = H} is a subgroup of G called the
normalizer of H in G.
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Frame Title

Lemma
Let P be a Sylow p-subgroup of a finite group G. Suppose that the
order of x is a power of p. If x−1Px = P, then x ∈ P.

Lemma
Let H and K be subgroups of G. The number of distinct H-
conjugates of K is (H : N(K) ∩ K).
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Frame Title
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Second Sylow Theorem

Theorem
Let G be a finite group and p be a prime dividing |G|. Then all Sylow
p-subgroups of G are conjugate. That is, if P1 and P2 are two Sylow
p-subgroups, there exists a g ∈ G such that gP1g−1 = P2.
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Third Sylow Theorem

Theorem
Let G be a finite group and p be a prime dividing |G|. Then the num-
ber of Sylow p-subgroups is congruent to 1 modulo p and divides
|G|.
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Frame Title

Theorem
If p and q are distinct primes with p < q, then every group G of
order pq has a single subgroup of order q and this subgroup is
normal in G. Hence, G cannot be simple. Furthermore, if q is not
congruent to 1 modulo p, then G is cyclic.
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Frame Title

Theorem
Let G′ = 〈aba−1b−1 : a,b ∈ G〉 be the subgroup consisting of all
finite products of elements of the formaba−1b−1 in a group G. Then
G′ is a normal subgroup of G and G/G′ is Abelian.

The subgroup G′ of G is called the commutator subgroup of G.
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Frame Title

Lemma
Let H and K be finite subgroups of a group G. Then

|HK| = |H||K|
|H ∩ K| .

262 264



Odd Order Theorem

Theorem
Every finite simple group of nonprime order must be of even order.
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Thank You!
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